DOI QR코드

DOI QR Code

Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM

  • Eratli, Nihal (Department of Civil Engineering, Istanbul Technical University) ;
  • Yilmaz, Murat (Department of Civil Engineering, Istanbul Technical University) ;
  • Darilmaz, Kutlu (Department of Civil Engineering, Istanbul Technical University) ;
  • Omurtag, Mehmet H. (Department of Civil Engineering, Istanbul Technical University)
  • Received : 2015.01.22
  • Accepted : 2015.12.08
  • Published : 2016.01.25

Abstract

One of the objectives of this study is to implement the direct calculation of the torsional moment of inertia for non-circular cross-sections, which is based on the St. Venant torsion formulation and the finite element method. Recently the proposed method provides a unique calculation of the torsional rigidity of simply and multiply connected cross-sections. Next, free vibration analyses of cylindrical and non-cylindrical helices with non-circular cross-sections are solved by a curved two-nodded mixed finite element based on the Timoshenko beam theory. Some thin-thick closed or open sections are handled and the natural frequencies of cylindrical and non-cylindrical helices are compared with the literature and the commercial finite element program SAP2000.

Keywords

References

  1. ANSYS (2011), SAS IP, Inc., ANSYS Workbench 2.0 Framework Version 14.0.0 Canonsburg PA. USA.
  2. Arutunan, N.X. and Abraman, B.L. (1963), Torsion of Elastic Bodies, State Publisher, Physics-Mathematics Series, Fizmatgiz, Moscow. (in Russian)
  3. Busool, W. and Eisenberger, M. (2002), "Free vibration of helicoidal beams of arbitrary shape and variable cross section", J. Vib. Acoust., 124, 397-409. https://doi.org/10.1115/1.1468870
  4. Darilmaz, K., Orakdogen, E., Girgin, K. and Kucukarslan, S. (2007), "Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach", Steel Compos. Struct., 7(3), 241-251. https://doi.org/10.12989/scs.2007.7.3.241
  5. Eisenberger, M. (1990), "Exact static and dynamic stiffness matrices for general variable cross section members", AIAA J., 28, 1105-1109. https://doi.org/10.2514/3.25173
  6. Ely, J.F. and Zienkiewicz, O.C. (1960), "Torsion of compound bars-A relaxation solution", Int. J. Mech. Sci., 1, 356-365. https://doi.org/10.1016/0020-7403(60)90055-2
  7. Eratli, N., Argeso, H., calim, F.F., Temel, B. and Omurtag, M.H. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM", J. Sound Vib., 333(16), 3671-3690. https://doi.org/10.1016/j.jsv.2014.03.017
  8. Eratli, N., Ermis, M. and Omurtag, M.H. (2015), "Free vibration analysis of helicoidal bars with thin-walled circular tube cross-section via mixed finite element method", Sigma J. Eng. Nat. Sci., 33(2), 200-218.
  9. Fard, K.M. (2014), "Higher order free vibration of sandwich curved beams with a functionally graded core", Struct. Eng. Mech., 49(5), 537-554. https://doi.org/10.12989/sem.2014.49.5.537
  10. Friedman, Z. and Kosmatka, J.B. (2000), "Torsion and flexure of a prismatic isotropic beam using the boundary element method", Comput. Struct., 74, 479-494. https://doi.org/10.1016/S0045-7949(99)00045-0
  11. Fung, Y.C. (1965), Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.
  12. Girgin, K. (2006), "Free vibration analysis of non-cylindrical helices with, variable cross-section by using mixed FEM", J. Sound Vib., 297, 931-945. https://doi.org/10.1016/j.jsv.2006.05.001
  13. Hermann, L.R. (1965), "Elastic torsional analysis of irregular shapes", J. Eng. Mech., ASCE, 91(6), 11-19.
  14. Jiang, W., Jones, W.K., Wang, T.L. and Wu, K.H. (1991), "Free vibrations of helical springs", J. Appl. Mech., 58, 222-228. https://doi.org/10.1115/1.2897154
  15. Krahula, J.L. and Lauterbach, G.F. (1969), "A finite element solution for Saint-Venant torsion", AIAA J., 7(12), 2200-2203. https://doi.org/10.2514/3.5516
  16. Lamancusa, J.S. and Saravanos, D.A. (1989), "The torsional analysis of bars with hollow square cross-sections", Finite Elem. Anal. Des., 6, 71-79. https://doi.org/10.1016/0168-874X(89)90036-X
  17. Lee, J. (2007a), "Free vibration analysis of cylindrical helical springs by the pseudospectral method", J. Sound Vib., 302, 85-196.
  18. Lee, J. (2007b), "Free vibration analysis of non-cylindrical helical springs by the pseudospectral method", J. Sound Vib., 305, 543-551. https://doi.org/10.1016/j.jsv.2007.04.017
  19. Li, Z., Ko, J.M. and Ni, Y.Q. (2000), "Torsional rigidity of reinforced concrete bars with arbitrary sectional shape", Finite Elem. Anal. Des., 35, 349-361. https://doi.org/10.1016/S0168-874X(99)00075-X
  20. Lin, Y. and Pisano. A.P. (1987), "General dynamic equations of helical springs with static solution and experimental verification", J. Appl. Mech, 54, 910-917. https://doi.org/10.1115/1.3173138
  21. Love, A.E.M. (1899), "The propagation of waves of elastic displacement along a helical wire", Tran. Cambridge Philos. Soc., 18, 364-374.
  22. Michell, J.H. (1890), "The small deformation of curves and surfaces with application to the vibrations of a helix and a circular ring", Mess. Math., 19, 68-82.
  23. Mottershead, J.E. (1980), "Finite elements for dynamical analysis of helical rods", Int. J. Mech. Sci., 2(1), 267-283.
  24. Murray, N.W. (1986), Introduction to the Theory of Thin-Walled Structures, Clarendon, Oxford.
  25. Nagaya, K., Takeda, S. and Nakata, Y. (1986), "Free vibration of coil springs of arbitrary shape", Int. J. Numer. Meth. Eng., 23, 1081-1099. https://doi.org/10.1002/nme.1620230607
  26. Oden, J.T. and Reddy, J.N. (1976), Variational Method in Theoretical Mechanics, Springer-Verlag, Berlin.
  27. Omurtag, M.H. and Akoz, A.Y. (1992), "The mixed finite element solution of helical beams with variable cross-section under arbitrary loading", Comput. Struct., 43(2), 325-331. https://doi.org/10.1016/0045-7949(92)90149-T
  28. Pearson, D. (1982), "The transfer matrix method for the vibration of compressed helical springs", J. Mech. Eng. Sci., 24(4), 163-171. https://doi.org/10.1243/JMES_JOUR_1982_024_033_02
  29. Rajasekaran, S. (2013), "Free vibration of tapered arches made of axially functionally graded materials", Struct. Eng. Mech., 45(4), 569-594. https://doi.org/10.12989/sem.2013.45.4.569
  30. Roark, R.J. (1954), Formulas for Stress and Strain, McGraw-Hill, New York.
  31. SAP2000 (2013), Computers and Structures, Inc., SAP2000 Ultimate Version 16.0.0 Berkeley CA. USA.
  32. Sapountzakis, E.J. (2001), "Nonuniform torsion of multi-material composite bars by the boundary element method", Comput. Struct., 79, 2805-2816. https://doi.org/10.1016/S0045-7949(01)00147-X
  33. Sapountzakis, E.J. and Mokos, V.G. (2004), "Nonuniform torsion of bars variable cross section", Comput. Struct., 82, 703-715. https://doi.org/10.1016/j.compstruc.2004.02.022
  34. Smith, J. (1996), "Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method", National Aeronautics and Space Administration, Langley Research Center.
  35. Timoshenko, S. and Goodier, J.N. (1969), Theory of Elasticity, McGraw-Hill, New York.
  36. Tufekci, E. and Yigit, O.O. (2012), "Effects of geometric parameters on in-plane vibrations of two-stepped circular beams", Struct. Eng. Mech., 42(2), 131-152. https://doi.org/10.12989/sem.2012.42.2.131
  37. Wang, C.T. (1953), Applied Elasticity, McGraw-Hill, New York.
  38. Wittrick, W.H. (1966), "On elastic wave propagation in helical spring", Int. J. Mech. Sci., 8, 25-47. https://doi.org/10.1016/0020-7403(66)90061-0
  39. Yildirim, V. (1996), "Investigation of parameters affecting free vibration frequency of helical springs", Int. J. Numer. Meth. Eng., 39(1), 99-114. https://doi.org/10.1002/(SICI)1097-0207(19960115)39:1<99::AID-NME850>3.0.CO;2-M
  40. Yildirim, V. and Ince, N. (1997), "Natural frequencies of helical springs of arbitrary shape", J. Sound Vib., 204(2), 311-329. https://doi.org/10.1006/jsvi.1997.0940
  41. Yildirim, V. (1997), "Free vibration analysis of non-cylindrical coil springs by combined use of the transfer matrix and complementary functions methods", Commun. Numer. Meth. Eng., 13, 487-494. https://doi.org/10.1002/(SICI)1099-0887(199706)13:6<487::AID-CNM77>3.0.CO;2-X
  42. Yildirim, V. (1998), "A parametric study on the free vibration of non-cylindrical helical springs", J. Appl. Mech., ASME, 65, 157-163. https://doi.org/10.1115/1.2789019
  43. Yildirim, V. (2002), "Expressions for predicting fundamental natural frequencies of non-cylindrical helical springs", J. Sound Vib., 252(3), 479-491. https://doi.org/10.1006/jsvi.2001.4005
  44. Yildirim, V. (2012), "On the linearized disturbance dynamic equations for buckling and free vibration of cylindrical helical coil springs under combined compression and torsion", Meccanica, 47, 1015-1033. https://doi.org/10.1007/s11012-011-9492-3
  45. Yoshimura, Y. and Murata, Y. (1952), "On the elastic waves propagated along coil springs", Inst. Sci. Tech., Tokyo Univ., 6(1), 27-35.
  46. Yu, A.M., Yang, C.J. and Nie, G.H. (2010), "Analytical formulation and evaluation for free vibration of naturally curved and twisted beams", J. Sound Vib., 329, 1376-1389. https://doi.org/10.1016/j.jsv.2009.11.014
  47. Yu, A.M. and Hao, Y. (2011), "Free vibration analysis of cylindrical helical springs with noncircular crosssections", J. Sound Vib., 330, 2628-2639. https://doi.org/10.1016/j.jsv.2010.12.015
  48. Yu, A.M. and Hao, Y. (2012), "Improved Riccati transfer matrix method for free vibration of noncylindrical helical springs including warping", Shock Vib., 19, 1167-1180. https://doi.org/10.1155/2012/713874
  49. Yu, A.M. and Hao, Y. (2013a), "Effect of warping on natural frequencies of symmetrical cross-ply laminated composite non-cylindrical helical springs", Int. J. Mech. Sci., 74, 65-72. https://doi.org/10.1016/j.ijmecsci.2013.04.010
  50. Yu, A.M. and Hao, Y. (2013b), "Warping effect in free vibration analysis of unidirectional composite noncylindrical helical springs", Meccanica, 48, 2453-2465. https://doi.org/10.1007/s11012-013-9760-5
  51. Zhu, L., Zhao, Y. and Wang, G. (2013), "Exact solution for free vibration of curved beams with variable curvature and torsion", Struct. Eng. Mech., 47(3), 345-359. https://doi.org/10.12989/sem.2013.47.3.345

Cited by

  1. Exact determination of the global tip deflection of both close-coiled and open-coiled cylindrical helical compression springs having arbitrary doubly-symmetric cross-sections vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.06.022
  2. Static and dynamic analysis of conical helices based on exact geometry via mixed FEM vol.131-132, 2017, https://doi.org/10.1016/j.ijmecsci.2017.07.010
  3. Transient response of functionally graded non-uniform cylindrical helical rods vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.571