References
- Allemang, R.J. and Brown, D.L. (1982), "A correlation coefficient for modal vector analysis", Proceedings of the 1st SEM International Modal Analysis Conference, Orlando, FL, November.
- Balsamo, L. and Mukhopadhyay, S., Betti, R. and Lus, H. (2013), "Damage Detection Using Flexibility Proportional Coordinate Modal Assurance Criterion", Topics in Modal Analysis, Volume 7: Proceedings of the 31st IMAC, A Conference on Structural Dynamics, 2013, Conference Proceedings of the Society for Experimental Mechanics Series 45.
- Berdichevsky, V.L., Armanios, E. and Badir, A. (1992), "Theory of anisotropic thin-walled closed-crosssection beams", Compos. Eng., 2(5-7), 411-432. https://doi.org/10.1016/0961-9526(92)90035-5
- Bernoulli, D. (1751), Commentarii Academiae Scientiarum Imperialis Petropolitanae, Petropoli. Chapter, De vibrationibus et sono laminarum elasticarum.
- Capozuzza, R. (2014), "Vibration of CFRP cantilever beam with damage", Compos. Struct., 116, 211-222. https://doi.org/10.1016/j.compstruct.2014.04.027
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 216-296.
- Carrera, E., Cinefra, M., Petrolo, M. and Zappino, E. (2014), Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons.
- Carrera, E. and Giunta, G. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2(1), 117-143. https://doi.org/10.1142/S1758825110000500
- Carrera, E., Giunta, G., Nali, P. and Petrolo, M. (2010a), "Refined beam elements with arbitrary crosssection geometries", Comput. Struct., 88(5-6), 283-293. https://doi.org/10.1016/j.compstruc.2009.11.002
- Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons.
- Carrera, E., Maiaru, M. and Petrolo, M. (2012a), "Component-wise analysis of laminated anisotropic composites", Int. J. Solid. Struct., 49(13), 1839-1851. https://doi.org/10.1016/j.ijsolstr.2012.03.025
- Carrera, E., Pagani, A. and Petrolo, M. (2012b), "Component-wise method applied to vibration of wing structures", J. Appl. Mech., 80(4), 041012. https://doi.org/10.1115/1.4007849
- Carrera, E., Pagani, A. and Petrolo, M. (2013a), "Classical, refined and component-wise analysis of reinforced-shell structures", AIAA J., 51(5), 1255-1268. https://doi.org/10.2514/1.J052331
- Carrera, E. and Petrolo, M. (2012a), "Refined beam Elements with only displacement variables and plate/shell capabilities", Meccanica, 47(3), 537-556. https://doi.org/10.1007/s11012-011-9466-5
- Carrera, E. and Petrolo, M. (2012b), "Refined one-dimensional formulations for laminated structure analysis", AIAA J., 50(1), 176-189. https://doi.org/10.2514/1.J051219
- Carrera, E., Petrolo, M. and Nali, P. (2010b), "Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section", Shock Vib., 18(3), 485-502. https://doi.org/10.1155/2011/706541
- Carrera, E., Petrolo, M. and Zappino, E. (2012c), "Performance of CUF approach to analyze the structural behavior of slender bodies", J. Struct. Eng., 138(2), 285-297. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000402
- Carrera, E., Zappino, E. and Petrolo, M. (2013b), "Analysis of thin-walled structures with longitudinal and transversal stiffeners", J. Appl. Mech., 80(1), 011006. https://doi.org/10.1115/1.4006939
- El Fatmi, R. and Ghazouani, N. (2011), "Higher order composite beam theory built on Saint-Venant solution. Part-I: Theoretical developments", Compos. Struct., 93(2), 557-566. https://doi.org/10.1016/j.compstruct.2010.08.024
- Euler, L. (1744), De curvis elasticis, Lausanne and Geneva, Bousquet.
- Fayyadh, M.M., Razak, H.A. and Ismail, Z. (2011) "Combined modal parameters-based index for damage identification in a beamlike structure: theoretical development and verification", Arch. Civil Mech. Eng., 11(3), 587-609. https://doi.org/10.1016/S1644-9665(12)60103-4
- Gopalakrishnan, S., Ruzzene, M. and Hanagud, S. (2011), Computational Techniques for Structural Health Monitoring, Springer.
- Kapania, K. and Raciti, S. (1989a), "Recent advances in analysis of laminated beams and plates, Part I: shear effects and buckling", AIAA J., 27(7), 923-935. https://doi.org/10.2514/3.10202
- Kapania, K. and Raciti, S. (1989b), "Recent advances in analysis of laminated beams and plates, Part II: vibrations and wave propagation", AIAA J., 27(7), 935-946. https://doi.org/10.2514/3.59909
- Ladeveze, P., Sanchez, P. and Simmonds, J. (2004), "Beamlike (Saint-Venant) solutions for fully anisotropic elastic tubes of arbitrary closed cross-section", Int. J. Solid. Struct., 41(7), 1925-1944. https://doi.org/10.1016/j.ijsolstr.2003.11.006
- Mukhopadhyay, S., Lus, H., Hong, L. and Betti, R. (2012), "Propagation of mode shape errors in structural identification", J. Sound Vib., 331, 3961-3975. https://doi.org/10.1016/j.jsv.2012.04.012
- Perez, M.A., Gil, L., Sanchez, M. and Oller, S. (2014), "Comparative experimental analysis of the effect caused by artificial and real induced damage in composite laminates", Compos. Struct., 112, 169-178. https://doi.org/10.1016/j.compstruct.2014.02.017
- Salawu, O.S. and Williams, C. (1995), "Bridge assessment using forced-vibration testing", J. Struct. Eng., 121(2), 161-173. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(161)
- Schardt, R. (1994), "Generalized beam theory - An adequate method for coupled stability problems", Thin Wall. Struct., 19(2-4), 161-180. https://doi.org/10.1016/0263-8231(94)90027-2
- Timoshenko, S.P. (1921), "On the corrections for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41, 744-746. https://doi.org/10.1080/14786442108636264
- Wang, Y., Liang, M. and Xiang, J. (2014), "Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information", Mech. Syst. Signal Pr., 48, 351-367. https://doi.org/10.1016/j.ymssp.2014.03.006
- Zhang, Z., Shankar, K., Morozov, E.V. and Tahtali. M. (2014), "Vibration-based delamination detection in composite beams through frequency changes", J. Vib. Control, DOI: 10.1177/1077546314533584.
- Zhao, J. and Zhang, L. (2012), "Structural damage identification based on the modal data change", Int. J. Eng. Manuf., 4, 59-66.
Cited by
- Evaluation of energy and failure parameters in composite structures via a Component-Wise approach vol.108, 2017, https://doi.org/10.1016/j.compositesb.2016.09.085
- Effect of Localized Damages on the Free Vibration Analysis of Civil Structures by Component-Wise Approach vol.144, pp.8, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002128
- Experimental and numerical dynamic analysis of laminate plates via Carrera Unified Formulation vol.202, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2018.05.085