References
- Agarwal, B.D., Broutman, L.J. and Chandrashekhara, K. (2006), Analysis and Performance of Fiber Composites, 3rd Edition, Wiley and sons Inc., Hoboken, New Jersy.
- Awad, Z.K., Aravinthan T. and Yan, Z. (2012), "Investigation of the free vibration behaviour of an innovative GFRP sandwich floor panel", Constr. Build. Mater., 37, 209-219. https://doi.org/10.1016/j.conbuildmat.2012.07.039
- Burlayenko, V.N. and Sadowski, T. (2010), "Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates", Int. J. Nonlin. Mech., 45(10), 959-968. https://doi.org/10.1016/j.ijnonlinmec.2009.07.002
- Bunsell, A.R. and Renard, J. (2005), Fundamentals of Fibre Reinforced Composite Materials, IOP Publishing Ltd, Bristol, UK.
- Burlayenko, V.N. and Sadowski, T. (2011), "Dynamic behaviour of sandwich plates containing single/multiple debonding", Comput. Mater. Sci., 50(4), 1263-1268. https://doi.org/10.1016/j.commatsci.2010.08.005
- Burlayenko, V.N. and Sadowski, T. (2012), "Finite element nonlinear dynamic analysis of sandwich plates with partially detached face sheet and core", Finite Elem. Anal. Des., 62, 49-64. https://doi.org/10.1016/j.finel.2012.08.003
- Burlayenko, V.N. and Sadowski, T. (2014), "Nonlinear dynamic analysis of harmonically excited debonded Sandwich plates using finite element modelling", Compos. Struct., 108, 354-366. https://doi.org/10.1016/j.compstruct.2013.09.042
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Chakrabarti, A. andSheikh, A.H. (2009), "Vibration and buckling of sandwich laminates having interfacial imperfections", J. Sandw. Struct. Mater., 11, 313-328. https://doi.org/10.1177/1099636209104514
- Chutima, S. and Blackie, A.P. (1996), "Effect of pitch distance, row spacing, end distance and bolt diameter on multi-fastened composite joints", Compos. Part A, 27(A), 105-110.
- Della, C.N. and Shu, D. (2005), "Vibration of beams with double delaminations", J. Sound Vib., 282, 919-935. https://doi.org/10.1016/j.jsv.2004.03.052
- Della, C.N. and Shu, D. (2007), "Free vibration analysis of delaminated bimaterial beams", Compos. Struct., 80, 212-220. https://doi.org/10.1016/j.compstruct.2006.05.005
- Diamanti, K. and Soutis, C. (2010), "Structural health monitoring techniques for aircraft composite structures", Prog. Aerosp. Sci., 46(8), 342-352. https://doi.org/10.1016/j.paerosci.2010.05.001
- Duggan, M. and Ochoa, O. (1992), "Natural frequency behaviour of damaged composite materials", J. Sound Vib., 158, 545-551. https://doi.org/10.1016/0022-460X(92)90424-V
- Frostig Y. (2002), "Classical and high-order computational models in the analysis of modern sandwich panels", Compos. Part B: Eng., 34(11), 83-100.
- Gallego, A., Moreno-García, P. and Casanova, C.F. (2013) "Modal analysis of delaminated compositeplates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis", J. Sound Vib., 332, 2971-2983. https://doi.org/10.1016/j.jsv.2013.01.012
- Grouve, W.J.B., Warnet, L., De Boer, A., Akkerman, R. and Vlekken, J. (2008), "Delamination detection with fibre bragg gratings based on dynamic behaviour", Compos. Sci. Tech., 68, 2418-2424. https://doi.org/10.1016/j.compscitech.2007.11.007
- Hosur, M.V., Vaidya, U.K., Myers, D. and Jeelani, S. (2003), "Studies on the repair of ballistic impact damaged S2-glass/vinyl ester laminates", Compos. Struct., 61, 281-290. https://doi.org/10.1016/S0263-8223(03)00063-1
- Hu, J.S. and Hwu, C. (1995), "Free vibration of delaminated composite sandwich beams", AIAA J., 33(10), 1911-1918. https://doi.org/10.2514/3.12745
- Ju, F., Lee, H.P. and Lee, K.H. (1995), "Free vibration of composite plates with delamination around cutouts", Compos. Struct., 31, 177-183. https://doi.org/10.1016/0263-8223(95)00016-X
- Karunasena, W. (2010), "The effect of debonding on the natural frequencies of laminated fibre composite sandwich plates", Proceedings of 6th Australasian Congress on Applied Mechanics, ACAM 6, Perth, Australia, December.
- Katnam, K.B., Da Silva, L.F.M. and Young, T.M. (2013), "Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities", Prog. Aerosp. Sci., 61, 26-42. https://doi.org/10.1016/j.paerosci.2013.03.003
- Kim, H.S., Chattopadhyay, A. and Ghoshal, A. (2003), "Characterisation of delamination effect on composite laminates using a new generalised layerwise approach", Comput. Struct., 81, 1555-1566. https://doi.org/10.1016/S0045-7949(03)00150-0
- Kulkarani, S.V. and Fredericks, D. (1971), "Frequency as a parameter in delamination problem-A preliminary investigation", J. Compos. Mater., 5, 112-119. https://doi.org/10.1177/002199837100500111
- Kwon, Y.W. and Lannamann, D.L. (2002), "Dynamic numerical modelng and simulation of interfacial cracks in sandwich structures for damage detection", J. Sandw. Struct. Mater., 4(2), 175-199. https://doi.org/10.1177/1099636202004002706
- Massabò, R. and Campi, F. (2014), "An efficient approach for multilayered beams and wide plates with imperfect interfaces and delaminations", Compos. Struct., 116, 311-324. https://doi.org/10.1016/j.compstruct.2014.04.009
- Mendelsohn, D.A. (2006), "Free vibration of an edge-cracked beam with a Dugdale-Barenblatt cohesive zone", J. Sound Vib., 292, 59-81. https://doi.org/10.1016/j.jsv.2005.07.037
- Mujumdar, P.M. and Sunyanarayan, S. (1988), "Flexural vibration of beams with delaminations", J. Sound Vib., 25(3), 447-461.
- Ramkumar, R.L., Kulkarni, S.V. and Pipes, R.B. (1979), "Free Vibration Frequencies of a Delaminated Beam", 34th Annual Technical Conference Proceedings, Reinforced/Composite Institute, Society of Plastics Industry, Section 22-E, 1-5.
- Reddy, J.N. and Miravete, A. (1995), Practical Analysis of Composite Laminates, CRC Press, Boca Raton, Fla.
- Schwarts, G.H., Rabinovich, O. and Frostig, Y. (2008), "Free vibration of delaminated unidirectional sandwich panels with a transversely flexible core and general boundary conditions-A high-order approach", J. Sandw. Struct. Mater., 10, 99-131. https://doi.org/10.1177/1099636207076484
- Schwarts, G.H., Rabinovich, O. and Frostig, Y. (2008), "Free vibrations of delaminated unidirectional sandwich panels with a transversely flexible core-a modified Galerkin approach", Journal of Sound and Vibration, 301, 253-277.
- Senthil, K., Arockiarajan, A., Palaninathan, R., Santhosh, B. and Usha, K.M. (2013), "Defects in composite structures: Its effects and prediction methods-A comprehensive review", Compos. Struct., 106, 139-149. https://doi.org/10.1016/j.compstruct.2013.06.008
- Shu, D. and Fan, H. (1996), "Free vibration of a bimaterial split beam", Compos. Part B, 27(1), 79-84. https://doi.org/10.1016/1359-8368(95)00026-7
- Strand7 (2010), Strand7 finite element analysis FEA software, Release 2.4.1, Sydney, Australia. (website: www.strand7.com)
- Tracy, J.J. and Pardoen, G.C. (1992), "Effect of delamination on the natural frequencies of composite laminates", J. Compos. Mater., 23(12), 1200-1215. https://doi.org/10.1177/002199838902301201
- Van Erp, G. and Rogers, D. (2008), "A highly sustainable fibre composite building panel", Proceedings of the International Workshop on Fibre Composites in Civil Infrastructure-Past, Present and Future, University of Southern Queensland, Toowoomba, Queensland, Australia, December.
- Wang, J.T.S., Lin, Y.Y. and Gibby, J.A. (1982), "Vibration of split beams", J. Sound Vib., 84(4), 491-520. https://doi.org/10.1016/S0022-460X(82)80030-8
Cited by
- On buckling and free vibration studies of sandwich plates and cylindrical shells pp.1530-7980, 2018, https://doi.org/10.1177/0892705718809810
- Delamination of a composite laminated under monotonic loading vol.63, pp.5, 2016, https://doi.org/10.12989/sem.2017.63.5.597
- Three-dimensional effective properties of layered composites with imperfect interfaces vol.4, pp.6, 2017, https://doi.org/10.12989/aas.2017.4.6.639
- Three-Dimensional Free Vibration Analysis of Thermally Loaded FGM Sandwich Plates vol.12, pp.15, 2019, https://doi.org/10.3390/ma12152377
- Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure vol.74, pp.6, 2020, https://doi.org/10.12989/sem.2020.74.6.723