DOI QR코드

DOI QR Code

완전-차동 선형 OTA를 사용한 새로운 계측 증폭기 설계

A Design of Novel Instrumentation Amplifier Using a Fully-Differential Linear OTA

  • 투고 : 2015.10.20
  • 심사 : 2015.12.28
  • 발행 : 2016.01.25

초록

저가, 광대역, 그리고 넓은 이득 제어 범위를 갖는 전자 계측 시스템을 실현하기 위한 완전-차동 선형(fully-differential linear operational transconductance amplifier : FLOTA)를 사용한 새로운 계측 증폭기(instrumentation amplifier : IA)를 설계하였다. 이 IA는 한 개의 FLOTA, 두 개의 저항 그리고 한 개의 연산 증폭기(operational amplifier : op-amp로 구성된다. 동작 원리는 FLOTA에 인가되는 두 입력 전압의 차가 각각 동일한 차동 전류로 변환되고 이 전류는 op-amp의 (+)단자의 저항기와 귀환 저항기를 통과시켜 단일 출력 전압을 구하는 것이다. 제안한 IA의 동작 원리를 확인하기 위해 FLOTA를 설계하였고 상용 op-amp LF356을 사용하여 IA를 구현하였다. 시뮬레이션 결과 FLOTA를 사용한 전압-전류 특성은 ${\pm}3V$의 입력 선형 범위에서 0.1%의 선형오차와 2.1uA의 오프셋 전류를 갖고 있었다. IA는 1개의 저항기의 저항 값 변화로 -20dB~+60dB의 이득을 갖고 있으며, 60dB에 대한 -3dB 주파수는 10MHz이였다. 제안한 IA의 외부의 저항기의 정합이 필요 없고 다른 저항기로 오프셋을 조절할 수 있는 장점을 갖고 있다. 소비전력은 ${\pm}5V$ 공급전압에서 105mW이였다.

A novel instrumentation amplifier (IA) using fully-differential linear operational transconductance amplifier (FLOTA) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of a FLOTA, two resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into FLOTA converts into two same difference currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the FLOTA and realized the IA used commercial op-amp LF356. Simulation results show that the FLOTA has linearity error of 0.1% and offset current of 2.1uA at input dynamic range ${\pm}3.0V$. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the 60dB was 10MHz. The proposed IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 105mW at supply voltage of ${\pm}5V$.

키워드

참고문헌

  1. A. S. Sedra and K. C. Smith, Microelectronic circuits ; Oxford Univ. Press(fourth edition), chap. 3, 1998.
  2. A. J. Peyton and V. Walsh, Analog Electronic with OP Amps A Source book of Practical Circuits ; Cambridge Univ. Press, chap. 1, 1993.
  3. S.-I. Lim, H.-K. Cho, "A Design of Instrument Amplifier for Bio-potential Measurements," IEEK SOC conference, pp. 85-88, May 2009.
  4. AD620 Data sheet, Analog Devices, Inc., 1999
  5. A. S. Sedra, G. W. Roberts, and F. Gohh, "The current conveyor : history, process and new results," IEE Proceeding, vol. 137. Pt. G, no. 2, pp. 78-87, Apr. 1990.
  6. C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC design:the current-mode approach, London ; Peter Peregrinus, 1990, chap. 4
  7. H.-W. Cha and K. Watanabe, "Wideband CMOS current conveyor," Electron. Lett., vol. 32. no. 14, pp. 1245-1246, July 1996. https://doi.org/10.1049/el:19960842
  8. H.-W. Cha, "Class A CMOS Current Conveyor," Journal of IEEK, vol. 34, SD, no. 9, pp. 1-9, Sept. 1997.
  9. H.-W. Cha S. Ogawa and K. Watanabe, "Class A CMOS Current Conveyors," IEICE Trans. Fundamentals, vol. E81-A, no. 6, pp. 1164-1167, June 1998.
  10. H.-W, Cha, S.-T. Park, and H.-J. Shin, "Class AB current conveyor for instrumentation appli-cations", Proc. of ITC-CSCC'98, vol. 2, pp. 1559-1562(Sokcho, Korea), August 1998
  11. H.-W. Cha, "A Design of low-power wideband bipolar current conveyor(CCII) and Its application to universal instrumentation amplifiers," Journal of IEEK, vol. 41, SD, no. 5, pp. 143-152, May 2004.
  12. H.-W. Cha, H.-S. Lim, S.-Y Lee, and T.-Y, Jeong, "Design of novel instrumentation amplifiers without resistors matching," Proc. of ITC-CSCC'2012, vol. I, July 15-18, 2012.
  13. H-W.Cha, T-Y.Jeong, "Design of a novel instrumentation amplifier using currentconveyor(CCII)," Journal of IEEK, vol. 50, SD, no. 12, pp. 80-87, December 2013
  14. H-W. Cha, T-Y. Jeong, H-S. Lim, S-Y. Lee, J-W. Lee, K-S. Kim, "A design of novel instrumentation amplifier using a fully-differential linear OTA," Journal of summer conference IEEK, vol 35, no. 1, pp.1426-1428, June 2012.
  15. W.-S. Chung, H.-W. Cha, and S.-H. Son, "A low-voltage low-power bipolar transconductor with high-linearity," IEICE Trans. Fundamentals, vol. E88-A, no. 1, pp. 384-386, January 2005. https://doi.org/10.1093/ietfec/E88-A.1.384
  16. LF356 Data sheet, Texas Instruments, Inc., 2013.