DOI QR코드

DOI QR Code

Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury

  • Received : 2015.12.14
  • Accepted : 2015.12.23
  • Published : 2016.01.15

Abstract

The identification of biomarkers for the early detection of acute kidney injury (AKI) is clinically important. Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality. Conventional biomarkers, such as serum creatinine (SCr) and blood urea nitrogen (BUN), are frequently used to diagnose AKI. However, these biomarkers increase only after significant structural damage has occurred. Recent efforts have focused on identification and validation of new noninvasive biomarkers for the early detection of AKI, prior to extensive structural damage. Furthermore, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Our previous study suggested that pyruvate kinase M2 (PKM2), which is excreted in the urine, is a sensitive biomarker for nephrotoxicity. To appropriately and optimally utilize PKM2 as a biomarker for AKI requires its complete characterization. This review highlights the major studies that have addressed the diagnostic and prognostic predictive power of biomarkers for AKI and assesses the potential usage of PKM2 as an early biomarker for AKI. We summarize the current state of knowledge regarding the role of biomarkers and the molecular and cellular mechanisms of AKI. This review will elucidate the biological basis of specific biomarkers that will contribute to improving the early detection and diagnosis of AKI.

Keywords

References

  1. Van Biesen, W., Vanholder, R. and Lamiere, N. (2006) Defining acute renal failure: RIFLE and beyond. Clin. J. Am. Soc. Nephrol., 1, 1314-1319. https://doi.org/10.2215/CJN.02070606
  2. Basile, D.P., Anderson, M.D. and Sutton, T.A. (2012) Pathophysiology of acute kidney injury. Compr. Physiol., 2, 1303-1353.
  3. Ricci, Z., Cruz, D.N. and Ronco, C. (2011) Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat. Rev. Nephrol., 7, 201-208. https://doi.org/10.1038/nrneph.2011.14
  4. Thadhani, R., Pascual, M. and Bonventre, J.V. (1996) Acute renal failure. N. Engl. J. Med., 334, 1448-1460. https://doi.org/10.1056/NEJM199605303342207
  5. Ympa, Y.P., Sakr, Y., Reinhart, K. and Vincent, J.L. (2005) Has mortality from acute renal failure decreased? A systematic review of the literature. Am. J. Med., 118, 827-832. https://doi.org/10.1016/j.amjmed.2005.01.069
  6. Espandiari, P., Zhang, J., Rosenzweig, B.A., Vaidya, V.S., Sun, J., Schnackenberg, L., Herman, E.H., Knapton, A., Bonventre, J.V., Beger, R.D., Thompson, K.L. and Hanig, J. (2008) The utility of a rodent model in detecting pediatric drug-induced nephrotoxicity. Toxicol. Sci., 99, 637-648.
  7. Zhou, Y., Vaidya, V.S., Brown, R.P., Zhang, J., Rosenzweig, B.A., Thompson, K.L., Miller, T.J., Bonventre, J.V. and Goering, P.L. (2008) Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol. Sci., 101, 159-170. https://doi.org/10.1093/toxsci/kfm260
  8. Moran, S.M. and Myers, B.D. (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int., 27, 928-937. https://doi.org/10.1038/ki.1985.101
  9. Star, R.A. (1998) Treatment of acute renal failure, Kidney Int., 54, 1817-1831. https://doi.org/10.1046/j.1523-1755.1998.00210.x
  10. Mehta, R.L., Kellum, J.A., Shah, S.V., Molitoris, B.A., Ronco, C., Warnock, D.G. and Levin, A. (2007). Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care, 11, R3. https://doi.org/10.1186/cc5147
  11. Holley, J.L. (2009) Clinical approach to the diagnosis of acute renal failure (5th edition). Primer on Kidney Diseases, Philadelphia. pp. 118-169.
  12. Smith, M.C. (2004) Acute renal failure. (3rd edition). Clinical Decisions in Urology, Hamilton, Ontario, Canada.
  13. Food and Drug Administration (FDA). (2009) Predictive safety testing consortium (PSTC). Available from: http://www.fda.gov/oc/initiatives/criticalpath/projectsummary/consortium.html. pp. 396-435.
  14. Vaidya, V.S., Ferguson, M.A. and Bonventre, J.V. (2008) Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol., 48, 463-493. https://doi.org/10.1146/annurev.pharmtox.48.113006.094615
  15. Astor, B.C., Muth, B., Kaufman, D.B., Pirsch, J.D., Michael Hofmann, R. and Djamali, A. (2013) Serum $\beta$2-microglobulin at discharge predicts mortality and graft loss following kidney transplantation. Kidney Int., 84, 810-817. https://doi.org/10.1038/ki.2013.172
  16. Bernier, G.M. (1980) $\beta$2-Microglobulin: structure, function and significance. Vox Sang., 38, 323-327. https://doi.org/10.1111/j.1423-0410.1980.tb04500.x
  17. Vaidya, V.S., Ferguson, M.A. and Bonventre, J.V. (2008) Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol., 48, 463-493. https://doi.org/10.1146/annurev.pharmtox.48.113006.094615
  18. Caccamo, A.E., Scltriti, M., Caporali, A., D'Arca, D., Scorcioni, F., Astancolle, S., Mangiola, M. and Bettuzzi, S. (2004) Cell detachment and apoptosis induction of immortalizaed human prostate epithelial cells are associated with early accumulation of a 45 kDa nuclear isoform of clusterin. Biochem. J., 382, 157-168. https://doi.org/10.1042/BJ20040158
  19. Rampoldi, L., Scolari, F., Amoroso, A., Ghiggeri, G. and Devuyst, O. (2011) The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int., 80, 338-347. https://doi.org/10.1038/ki.2011.134
  20. Yan, Q., Sui, W., Wang, B., Zou, H., Zou, G. and Luo, H. (2012) Expression of MMP-2 and TIMP-1 in renal tissue of patients with chronic active antibody-mediated renal graft rejection. Diagn. Pathol., 7, 141. https://doi.org/10.1186/1746-1596-7-141
  21. Dinarello, C.A., Novick, D., Rubinstein, M. and Lonnemann, G. (2003) Interleukin 18 and interleukin 18 binding protein: possible role in immunosuppression of chronic renal failure. Blood Purif., 21, 258-270. https://doi.org/10.1159/000070699
  22. Campbell, J.A., Corrigall, A.V., Guy, A. and Kirsch, R.E. (1991) Immunohistologic localization of alpha, mu, and pi class glutathione S-transferases in human tissues. Cancer, 67, 1608-1613. https://doi.org/10.1002/1097-0142(19910315)67:6<1608::AID-CNCR2820670623>3.0.CO;2-S
  23. Xie, Y., Sakatsume, M., Nishi, S., Narita, I., Arakawa, M. and Gejyo, F. (2001) Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int., 60, 1645-1657. https://doi.org/10.1046/j.1523-1755.2001.00032.x
  24. Yu, Y., Jin, H., Holder, D., Ozer, J.S., Villarreal, S., Shughrue, P., Shi, S., Figueroa, D.J., Clouse, H., Su, M., Muniappa, N., Troth, S.P., Bailey, W., Seng, J., Aslamkhan, A.G., Thudium, D., Sistare, F.D. and Gerhold, D.L. (2010) Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol., 28, 470-477. https://doi.org/10.1038/nbt.1624
  25. Yang, J., Goetz, D., Li, J.Y., Wang, W., Mori, K., Setlik, D., Du, T., Erdjument-Bromage, H., Tempst, P., Strong, R. and Barasch, J. (2002) An iron delivery pathway mediated by a lipocalin. Mol. Cell, 10, 1045-1056. https://doi.org/10.1016/S1097-2765(02)00710-4
  26. Borregaard, N., Sehested, M., Nielsen, B.S., Sengelov, H. and Kjeldsen, L. (1995) Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood, 85, 812-817.
  27. Mishra, J., Dent, C., Tarabishi, R., Mitsnefes, M.M., Ma, Q., Kelly, C., Ruff, S.M., Zahedi, K., Shao, M., Bean, J., Mori, K., Barasch, J. and Devarajan, P. (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet, 365, 1231-1238. https://doi.org/10.1016/S0140-6736(05)74811-X
  28. Moran, S.M. and Myers, B.D. (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int., 27, 928-937. https://doi.org/10.1038/ki.1985.101
  29. Bennett, M.R., Nehus, E., Haffner, C., Ma, Q. and Devarajan, P. (2015) Pediatric reference ranges for acute kidney injury biomarkers. Pediatr. Nephrol., 30, 677-685. https://doi.org/10.1007/s00467-014-2989-y
  30. Bennett, M., Dent, C.L., Ma, Q., Dastrala, S., Grenier, F., Workman, R., Syed, H., Ali, S., Barasch, J. and Devarajan, P. (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin. J. Am. Soc. Nephrol., 3, 665-673. https://doi.org/10.2215/CJN.04010907
  31. Won, A.J., Kim, S., Kim, Y.G., Kim, K.B., Choi, W.S., Kacew, S., Kim, K.S., Jung, J.H., Lee, B.M., Kim, S. and Kim, H.S. (2015) Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury. Mol. Biosyst., 12, 133-144.
  32. Xin, C., Yulong, X., Yu, C., Changchun, C., Feng, Z. and Xinwei, M. (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Renal Failure, 30, 904-913. https://doi.org/10.1080/08860220802359089
  33. Silberstein, J.L., Sprenkle, P.C., Su, D., Power, N.E., Tarin, T.V., Ezell, P., Sjoberg, D.D., Feifer, A., Fleisher, M., Russo, P. and Touijer, K.A. (2013) Neutrophil gelatinase-associated lipocalin (NGAL) levels in response to unilateral renal ischaemia in a novel pilot two-kidney porcine model. BJU Int., 112, 517-525. https://doi.org/10.1111/bju.12066
  34. Sprenkle, P.C., Wren, J., Maschino, A.C., Feifer, A., Power, N., Ghoneim, T., Sternberg, I., Fleisher, M. and Russo, P. (2013) Urine neutrophil gelatinase-associated lipocalin as a marker of acute kidney injury after kidney surgery. J. Urol., 190, 159-164. https://doi.org/10.1016/j.juro.2013.01.101
  35. Zekey, F., Senkul, T., Ates, F., Soydan, H., Yilmaz, O. and Baykal, K. (2012) Evaluation of the impact of shock wave lithotripsy on kidneys using a new marker: how do neutrophil gelatinese-associated lypocalin values change after shock wave lithotripsy?. Urology, 80, 267-272. https://doi.org/10.1016/j.urology.2012.02.015
  36. Ichimura, T., Bonventre, J.V., Bailly, V., Wei, H., Hession, C.A., Cate, R.L. and Sanicola, M. (1998) Kidney Injury Molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem., 273, 4135-4142. https://doi.org/10.1074/jbc.273.7.4135
  37. Han, W.K., Bailly, V., Abichandani, R., Thadhani, R. and Bonventre, J.V. (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int., 62, 237-244. https://doi.org/10.1046/j.1523-1755.2002.00433.x
  38. van Timmeren, M.M., van den Heuvel, M.C., Bailly, V., Bakker, S.J., van Goor, H. and Stegeman, C.A. (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J. Pathol., 212, 209-217. https://doi.org/10.1002/path.2175
  39. Solez, K., Colvin, R.B., Racusen, L.C., Haas, M., Sis, B., Mengel, M., Halloran, P.F., Baldwin, W., Banfi, G., Collins, A.B., Cosio, F., David, D.S., Drachenberg, C., Einecke, G., Fogo, A.B., Gibson, I.W., Glotz, D., Iskandar, S.S., Kraus, E., Lerut, E., Mannon, R.B., Mihatsch, M., Nankivell, B.J., Nickeleit, V., Papadimitriou, J.C., Randhawa, P., Regele, H., Renaudin, K., Roberts, I., Seron, D., Smith, R.N. and Valente, M. (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant., 8, 753-760. https://doi.org/10.1111/j.1600-6143.2008.02159.x
  40. Han, W.K., Waikar, S.S., Johnson, A., Betensky, R.A., Dent, C.L., Devarajan, P. and Bonventre, J.V. (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int., 73, 863-869. https://doi.org/10.1038/sj.ki.5002715
  41. Bonventre, J.V. (2009) Bonventre Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant., 24, 3265-3268. https://doi.org/10.1093/ndt/gfp010
  42. Kim, S.Y., Sohn, S.J., Won, A.J., Kim, H.S. and Moon, A. (2014) Identification of noninvasive biomarkers for nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol. Sci., 140, 247-258. https://doi.org/10.1093/toxsci/kfu096
  43. Itokazu, Y., Segawa, Y., Inoue, N. and Omata, T. (1999) Dgalactosamine induced mouse hepatic apoptosis: possible involvement with tumor necrosis factor, but not with caspase-3 activity. Biol. Pharm. Bull., 22, 1127-1130. https://doi.org/10.1248/bpb.22.1127
  44. Lee, Y.K., Park, E.Y., Kim, S., Son, J.Y., Kim, T.H., Kang, W.G., Jeong, T.C., Kim, K.B., Kwack, S.J., Lee, J., Kim, S., Lee, B.M. and Kim, H.S. (2014) Evaluation of cadmiuminduced nephrotoxicity using urinary metabolomic profiles in sprague-dawley male rats. J. Toxicol. Environ. Health Part A, 77, 1384-1398. https://doi.org/10.1080/15287394.2014.951755
  45. de Boer, I.H., Katz, R., Cao, J.J., Fried, L.F., Kestenbaum, B., Mukamal, K., Rifkin, D.E., Sarnak, M.J., Shlipak, M.G. and Siscovick, D.S. (2009) Cystatin C, albuminuria, and mortality among older adults with diabetes. Diabetes Care, 32, 1833-1838. https://doi.org/10.2337/dc09-0191
  46. Beringer, P.M., Hidayat, L., Heed, A., Zheng, L., Owens, H., Benitez, D. and Rao, A.P. (2009) GFR estimates using cystatin C are superior to serum creatinine in adult patients with cystic fibrosis. J. Cystic Fibrosis, 8, 19-25. https://doi.org/10.1016/j.jcf.2008.07.004
  47. Koyner, J.L., Bennett, M.R., Worcester, E.M., Ma, Q., Raman, J., Jeevanandam, V., Kasza, K.E., O'Connor, M.F., Konczal, D.J., Trevino, S., Devarajan, P. and Murray, P.T. (2008) Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int., 74, 1059-1069. https://doi.org/10.1038/ki.2008.341
  48. Villa, P., Jimenez, M., Soriano, M.C., Manzanares, J. and Casasnovas, P. (2005) Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit. Care, 9, R139-143.
  49. Herget-Rosenthal, S., Marggraf, G., Husing, J., Goring, F., Pietruck, F., Janssen, O., Philipp, T. and Kribben, A. (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int., 66, 1115-1122. https://doi.org/10.1111/j.1523-1755.2004.00861.x
  50. Oldberg, A., Franzen, A. and Heinegard, D. (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl. Acad. Sci. U.S.A., 83, 8819-8823. https://doi.org/10.1073/pnas.83.23.8819
  51. Patarca, R., Freeman, G.J., Singh, R.P., Wei, F.Y., Durfee, T., Blattner, F., Regnier, D.C., Kozak, C.A., Mock, B.A., Morse, H.C. 3rd., Jerrells, T.R. and Cantor, H. (1989) Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J. Exp. Med., 170, 145-161. https://doi.org/10.1084/jem.170.1.145
  52. Nomura, S., Wills, A.J., Edwards, D.R., Heath, J.K. and Hogan, B.L. (1988) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J. Cell Biol., 106, 441-450. https://doi.org/10.1083/jcb.106.2.441
  53. Shiraga, H., Min, W., VanDusen, W.J., Clayman, M.D., Miner, D., Terrell, C.H., Sherbotie, J.R., Foreman, J.W., Przysiecki, C., Neilson, E.G. and Hoyer, J.R. (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc. Natl. Acad. Sci. U.S.A., 89, 426-430. https://doi.org/10.1073/pnas.89.1.426
  54. Brown, L.F., Berse, B., Van de Water, L., Papadopoulos-Sergiou, A., Perruzzi, C.A., Manseau, E.J., Dvorak, H.F. and Senger, D.R. (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol. Biol. Cell, 3, 1169-1180. https://doi.org/10.1091/mbc.3.10.1169
  55. Chen, J., Singh, K., Mukherjee, B.B. and Sodek, J. (1993) Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption. Matrix, 13, 113-123. https://doi.org/10.1016/S0934-8832(11)80070-3
  56. Alchi, B., Nishi, S., Kondo, D., Kaneko, Y., Matsuki, A., Imai, N., Ueno, M., Iguchi, S., Sakatsume, M., Narita, I., Yamamoto, T. and Gejyo, F. (2005) Osteopontin expression in acute renal allograft rejection. Kidney Int., 67, 886-896. https://doi.org/10.1111/j.1523-1755.2005.00153.x
  57. Kahles, F., Findeisen, H.M. and Bruemmer, D. (2014) Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab., 3, 384-393. https://doi.org/10.1016/j.molmet.2014.03.004
  58. Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., Torigoe, K., Okura, T., Nukada, Y., Hattori, K., Akita, K., Namba, M., Tanabe, F., Konishi, K., Fukuda, S. and Kurimoto, M. (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 378, 88-91. https://doi.org/10.1038/378088a0
  59. Boros, P. and Bromberg, J.S. (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am. J. Transplant., 6, 652-658. https://doi.org/10.1111/j.1600-6143.2005.01228.x
  60. Parikh, C.R., Mishra, J., Thiessen-Philbrook, H., Dursun, B., Ma, Q., Kelly, C., Dent, C., Devarajan, P. and Edelstein, C.L. (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int., 70, 199-203. https://doi.org/10.1038/sj.ki.5001527
  61. Xin, C., Yulong, X., Yu, C., Changchun, C., Feng, Z. and Xinwei, M. (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Renal Failure, 30, 904-913. https://doi.org/10.1080/08860220802359089
  62. He, Z., Lu, L., Altmann, C., Hoke, T.S., Ljubanovic, D., Jani, A., Dinarello, C.A., Faubel, S. and Edelstein, C.L. (2008) Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am. J. Physiol. Renal Physiol., 295, F1414-1421. https://doi.org/10.1152/ajprenal.90288.2008
  63. Drake, P.L., Krieg, E., Teass, A.W. and Vallyathan, V. (2002) Two assays for urinary N-acetyl-beta-D-glucosaminidase compared. Clin. Chem., 48, 1604-1605.
  64. Ali, R.J., Al-Obaidi, F.H. and Arif, H.S. (2014) The role of urinary N-acetyl beta-D-glucosaminidase in children with urological problems. Oman Med. J., 29, 285-288. https://doi.org/10.5001/omj.2014.74
  65. Vaidya, V.S., Ozer, J.S., Dieterle, F., Collings, F.B., Ramirez, V., Troth, S., Muniappa, N., Thudium, D., Gerhold, D., Holder, D.J., Bobadilla, N.A., Marrer, E., Perentes, E., Cordier, A., Vonderscher, J., Maurer, G., Goering, P.L., Sistare, F.D. and Bonventre, J.V. (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol., 28, 478-485. https://doi.org/10.1038/nbt.1623
  66. Marchewka, Z., Kuzniar, J. and Dlugosz, A. (2001) Enzymuria and beta2-mikroglobulinuria in the assessment of the influence of proteinuria on the progression of glomerulopathies. Int. Urol. Nephrol., 33, 673-676. https://doi.org/10.1023/A:1020523016981
  67. Tolkoff-Rubin, N.E., Rubin, R.H. and Bonventre, J.V. (1988) Noninvasive renal diagnostic studies. Clin. Lab. Med., 8, 507-526.
  68. Schaub, S., Wilkins, J.A., Antonovici, M., Krokhin, O., Weiler, T., Rush, D. and Nickerson, P. (2005) Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant., 5, 729-738. https://doi.org/10.1111/j.1600-6143.2005.00766.x
  69. Donadio, C., Lucchesi, A., Ardini, M. and Giordani, R. (2001) Cystatin C, beta 2-microglobulin, and retinol-binding protein as indicators of glomerular filtration rate: comparison with plasma creatinine. J. Pharm. Biomed. Anal., 24, 835-842. https://doi.org/10.1016/S0731-7085(00)00550-1
  70. Branten, A.J., Mulder, T.P., Peters, W.H., Assmann, K.J. and Wetzels, J.F. (2000) Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron, 85, 120-126. https://doi.org/10.1159/000045644
  71. Harrison, D.J., Kharbanda, R., Cunningham, D.S., McLellan, L.I., and Hayes, J.D. (1989) Distribution of glutathione Stransferase isoenzymes in human kidney: basis for possible markers of renal injury. J. Clin. Pathol., 42, 624-628. https://doi.org/10.1136/jcp.42.6.624
  72. Gautier, J.C., Riefke, B., Walter, J., Kurth, P., Mylecraine, L., Guilpin, V., Barlow, N., Gury, T., Hoffman, D., Ennulat, D., Schuster, K., Harpur, E. and Pettit, S. (2010) Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin. Toxicol. Pathol., 38, 943-956. https://doi.org/10.1177/0192623310379139
  73. Svendsen, K.B., Ellingsen, T., Bech, J.N., Pfeiffer-Jensen, M., Stengaard-Pedersen, K. and Pedersen, E.B. (2005) Urinary excretion of ${\alpha}$-GST and albumin in rheumatoid arthritis patients treated with methotrexate or other DMARDs alone or in combination with NSAIDs. Scand. J. Rheumatol., 34, 34-39. https://doi.org/10.1080/03009740510017977
  74. Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L. and Cantley, L.C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452, 230-233. https://doi.org/10.1038/nature06734
  75. Mazurek, S., Drexler, H.C., Troppmair, J., Eigenbrodt, E. and Rapp, U.R. (2007) Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go mechanism. Anticancer Res., 27, 3963-3971.
  76. Muirhead, H. (1990) Isoenzymes of pyruvate kinase. Biochem. Soc. Trans., 18, 193-196. https://doi.org/10.1042/bst0180193
  77. Weiss, R.H. and Kim, K. (2011) Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol., 8, 22-33.
  78. Zager, R.A., Johnson, A.C. and Becker, K. (2014) Renal cortical pyruvate depletion during AKI. J. Am. Soc. Nephrol., 25, 998-1012. https://doi.org/10.1681/ASN.2013070791
  79. Wakino, S., Hasegawa, K. and Itoh, H. (2015) Sirtuin and metabolic kidney disease. Kidney Int., 88, 691-698. https://doi.org/10.1038/ki.2015.157
  80. He, G., Jiang, Y., Zhang, B. and Wu, G. (2014) The effect of HIF-1${\alpha}$ on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pac. J. Clin. Nutr., 23, 174-180.
  81. Bartrons, R. and Caro, J. (2007) Hypoxia, glucose metabolism and the Warburg's effect. J. Bioenerg. Biomembr., 39, 223-229. https://doi.org/10.1007/s10863-007-9080-3
  82. Yang, X.Y., Zheng, K.D., Lin, K., Zheng, G., Zou, H., Wang, J.M., Lin, Y.Y., Chuka, C.M., Ge, R.S., Zhai, W. and Wang, J.G. (2015) Energy metabolism disorder as a contributing factor of rheumatoid arthritis: a comparative proteomic and metabolomic study. PLoS One, 10, e0132695. https://doi.org/10.1371/journal.pone.0132695

Cited by

  1. Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology vol.32, pp.1, 2016, https://doi.org/10.5487/TR.2016.32.1.001
  2. Ameliorative effects of pine bark extract on cisplatin-induced acute kidney injury in rats vol.39, pp.1, 2017, https://doi.org/10.1080/0886022X.2017.1282871
  3. Predicting acute kidney injury: current status and future challenges pp.1724-6059, 2017, https://doi.org/10.1007/s40620-017-0416-8
  4. Identification of aldo-keto reductase (AKR7A1) and glutathione S-transferase pi (GSTP1) as novel renal damage biomarkers following exposure to mercury vol.37, pp.10, 2018, https://doi.org/10.1177/0960327117751234
  5. Pyruvate Kinase M2 Increases Angiogenesis, Neurogenesis, and Functional Recovery Mediated by Upregulation of STAT3 and Focal Adhesion Kinase Activities After Ischemic Stroke in Adult Mice vol.15, pp.3, 2018, https://doi.org/10.1007/s13311-018-0635-2
  6. Hepatic damage exacerbates cisplatin-induced acute kidney injury in Sprague-Dawley rats vol.81, pp.11, 2018, https://doi.org/10.1080/15287394.2018.1451179