DOI QR코드

DOI QR Code

Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation

  • Yoon, Miyoung (The Hamner Institutes for Health Sciences) ;
  • Clewell, Harvey J. III (The Hamner Institutes for Health Sciences)
  • Received : 2015.12.01
  • Accepted : 2016.01.05
  • Published : 2016.01.15

Abstract

Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.

Keywords

References

  1. Andersen, M.E. and Krewski, D. (2010) The vision of toxicity testing in the 21st century: moving from discussion to action. Toxicol. Sci., 117, 17-24. https://doi.org/10.1093/toxsci/kfq188
  2. Judson, R.S., Kavlock, R.J., Setzer, R.W., Hubal, E.A., Martin, M.T., Knudsen, T.B., Houck, K.A., Thomas, R.S., Wetmore, B.A. and Dix, D.J. (2011) Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment. Chem. Res. Toxicol., 24, 451-462. https://doi.org/10.1021/tx100428e
  3. Knudsen, T.B., Houck, K.A., Sipes, N.S., Singh, A.V., Judson, R.S., Martin, M.T., Weissman, A., Kleinstreuer, N.C., Mortensen, H.M., Reif, D.M., Rabinowitz, J.R., Setzer, R.W., Richard, A.M., Dix, D.J. and Kavlock, R.J. (2011) Activity profiles of 309 ToxCast chemicals evaluated across 292 biochemical targets. Toxicology, 282, 1-15. https://doi.org/10.1016/j.tox.2010.12.010
  4. Ankley, G.T., Bennett, R.S., Erickson, R.J., Hoff, D.J., Hornung, M.W., Johnson, R.D., Mount, D.R., Nichols, J.W., Russom, C.L., Schmieder, P.K., Serrrano, J.A., Tietge, J.E. and Villeneuve, D.L. (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem., 29, 730-741. https://doi.org/10.1002/etc.34
  5. Clewell, H.J., Tan, Y.M., Campbell, J.L. and Andersen, M.E. (2008) Quantitative interpretation of human biomonitoring data. Toxicol. Appl. Pharmacol., 231, 122-133. https://doi.org/10.1016/j.taap.2008.04.021
  6. Yoon, M., Cambell, J.L., Andersen, M.E. and Clewell, H.J. (2012) Quantitative in vitro to in vivo extrapolation of cellbased toxicity assay results. Crit. Rev. Toxicol., 42, 633-652. https://doi.org/10.3109/10408444.2012.692115
  7. Clewell, H.J., Gentry, P.R., Covington, T.R., Sarangapani, R. and Teeguarden, J.G. (2004) Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Toxicol. Sci., 79, 381-393. https://doi.org/10.1093/toxsci/kfh109
  8. Saghir, S.A., Khan, S.A. and McCoy, A.T. (2012) Ontogeny of mammalian metabolizing enzymes in humans and animals used in toxicological studies. Crit. Rev. Toxicol., 42, 323-357. https://doi.org/10.3109/10408444.2012.674100
  9. Clewell, H.J., Teequarden, J., McBonald, T., Sarangapani, R., Lawrence, G., Covington, T., Gentry R. and Shipp, A. (2002) Review and evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Crit. Rev. Toxicol., 32, 329-389. https://doi.org/10.1080/20024091064264
  10. Clewell, H.J., Reddy, M.B., Lave, T. and Andersen, M.E. (2007) Physiologically Based Pharmacokinetic Modeling. Preclinical Development Handbook, John Wiley and Sons, Inc. pp. 1167-1227.
  11. Phillips, M.B., Yoon, M.Y., Young, B. and Tan, Y.M. (2014) Analysis of biomarker utility using a PBPK/PD model for carbaryl. Front. Pharmacol., 5, 246.
  12. Price, P.S., Schnelle, K.D., Cleveland, C.B., Bartels, M.J., Hinderliter, P.M., Timchalk, C. and Poet, T.S. (2011) Application of a source-to-outcome model for the assessment of health impacts from dietary exposures to insecticide residues. Regul. Toxicol. Pharmacol., 61, 23-31. https://doi.org/10.1016/j.yrtph.2011.05.009
  13. Brown, R.P., Delp, M.D., Lindstedt, S.L., Rhomberg, L.R. and Beliles, R.P. (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health, 13, 407-484. https://doi.org/10.1177/074823379701300401
  14. Wu, H., Yoon, M.Y., Verner, M.A., Xue, J., Luo, M., Andersen, M.E., Longnecker, M.P. and Clewell, H.J. (2015) Can the observed association between serum perfluoroalkyl sub stances and delayed menarche be explained on the basis of puberty-related changes in physiology and pharmacokinetics? Environ. Int., 82, 61-68. https://doi.org/10.1016/j.envint.2015.05.006
  15. Price, P.S., Conolly, R.B., Chaisson, C.F., Gross, E.A., Young, J.S., Mathis, E.T. and Tedder, D.R. (2003) Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit. Rev. Toxicol., 33, 469-503. https://doi.org/10.1080/10408440390242324
  16. Houston, J.B. and Galetin, A. (2008) Methods for predicting in vivo pharmacokinetics using data from in vitro assays. Curr. Drug Metab., 9, 940-951. https://doi.org/10.2174/138920008786485164
  17. Jamei, M., Marciniak, S., Edwards, D., Wragg, K., Feng, K., Barnett, A. and Rostami-Hodjegan, A. (2013) The simcyp population based simulator: architecture, implementation, and quality assurance. Silico Pharmacol., 1, 9. https://doi.org/10.1186/2193-9616-1-9
  18. Jamei, M., Marciniak, S., Feng, K., Barnett, A., Tucker, G. and Rostami-Hodjegan, A. (2009) The Simcyp population-based ADME simulator. Expert Opin. Drug Metab. Toxicol., 5, 211-223. https://doi.org/10.1517/17425250802691074
  19. Rostami-Hodjegan, A. and Tucker, G.T. (2007) Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat. Rev. Drug Discovery, 6, 140-148. https://doi.org/10.1038/nrd2173
  20. Clewell, H.J. and Andersen, M.E. (1996) Use of physiologically based pharmacokinetic modeling to investigate individual versus population risk. Toxicology, 111, 315-329. https://doi.org/10.1016/0300-483X(96)03385-9
  21. Clewell, H.J. (1993) Coupling of computer modeling with in vitro methodologies to reduce animal usage in toxicity testing. Toxicol. Lett., 68, 101-117. https://doi.org/10.1016/0378-4274(93)90123-F
  22. Hinderliter, P.M., Price, P.S., Bartels, M.J., Timchalk, C. and Poet, T.S. (2011) Development of a source-to-outcome model for dietary exposures to insecticide residues: an example using chlorpyrifos. Regul. Toxicol. Pharmacol., 61, 82-92. https://doi.org/10.1016/j.yrtph.2011.06.004
  23. Kedderis, G.L. (2007) In vitro to in vivo extrapolation of metabolic rate constants for physiologically based pharmacokinetic models. Toxicokinet. Risk Assess., 185-210.
  24. Yoon, M., Kedderis, G.L., Yan, G.Z. and Glewell, H.J. (2015) Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study. Toxicology, 332, 52-66. https://doi.org/10.1016/j.tox.2014.05.006
  25. Groothuis, F.A., Heringa, M.B., Nicol, B., Hermens, J.L., Blaauboer, B.J. and Kramer, N.I. (2015) Dose metric considerations in in vitro assays to improve quantitative in vitro?in vivo dose extrapolations. Toxicology, 332, 30-40. https://doi.org/10.1016/j.tox.2013.08.012
  26. Johnson, T.N., Rostami-Hodjegan, A. and Tucker, G.T. (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin. pharmacokinet., 45, 931-956. https://doi.org/10.2165/00003088-200645090-00005
  27. Nong, A., McCarver, D.G., Hines, R.N. and Krishnan, K. (2006) Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: a case study with toluene. Toxicol. Appl. Pharmacol., 214, 78-87. https://doi.org/10.1016/j.taap.2005.12.001
  28. Wetmore, B.A., Allen, B., Clewell, H.J., Parker, T., Wambaugh, J.F., Almond, L.M. and Thomas, R.S. (2014) Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing. Toxicol. Sci., 142, 210-224. https://doi.org/10.1093/toxsci/kfu169
  29. Hines, R.N. (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol. Ther., 118, 250-267. https://doi.org/10.1016/j.pharmthera.2008.02.005
  30. Rowland, M., Peck, C. and Tucker, G. (2011) Physiologicallybased pharmacokinetics in drug development and regulatory science. Annu. Rev. Pharmacol. Toxicol., 51, 45-73. https://doi.org/10.1146/annurev-pharmtox-010510-100540
  31. Sheets, L.P., Doherty, J.D., Law, M.W., Reiter, L.W. and Crofton, K.M. (1994) Age-dependent differences in the susceptibility of rats to deltamethrin. Toxicol. Appl. Pharmacol., 126, 186-190. https://doi.org/10.1006/taap.1994.1106
  32. Anand, S.S., Kim, K.B., Padilla, S., Muralidhara, S., Kim, H.J., Fisher, J.W. and Bruckner, J.V. (2006) Ontogeny of hepatic and plasma metabolism of deltamethrin in vitro: role in age-dependent acute neurotoxicity. Drug Metab. Dispos., 34, 389-397.
  33. Kim, K.B., Anand, S.S., Kim, H.J., White, C.A., Fisher, J.W., Tornero-Velez, R. and Bruckner, J.V. (2010) Age-, dose-and time-ependency of plasma and tissue distribution of deltamethrin in immature rats. Toxicol. Sci., 115, 354-368. https://doi.org/10.1093/toxsci/kfq074
  34. Crow, J.A., Borazjani, A., Potter, P.M. and Ross, M.K. (2007) Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases. Toxicol. Appl. Pharmacol., 221, 1-12. https://doi.org/10.1016/j.taap.2007.03.002
  35. Godin, S.J., Scollon, E.J., Hughes, M.F., Potter, P.M., DeVito, M.J. and Ross, M.K. (2006) Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab. Dispos., 34, 1764-1771. https://doi.org/10.1124/dmd.106.010058
  36. Hideo, K. (2012) Biotransformation and enzymes responsible for metabolism of pyrethroids in mammals, in parameters for pesticide QSAR and PBPK/PD models for human risk assessment. Am. Chem. Soc., 41-52.
  37. Ross, M.K., Borazjani, A., Edwards, C.C. and Potter, P.M. (2006) Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem. Pharmacol., 71, 657-669. https://doi.org/10.1016/j.bcp.2005.11.020
  38. Hines, R.N. (2007) Ontogeny of human hepatic cytochromes P450. J. Biochem. Mol. Toxicol., 21, 169-175. https://doi.org/10.1002/jbt.20179
  39. Yang, D., Pearce, R.E., Wang, X., Gaedigk, R., Wan, Y.J. and Yan, B. (2009) Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem. Pharmacol., 77, 238-247. https://doi.org/10.1016/j.bcp.2008.10.005
  40. Clewell, H.J. and Yoon, M. (2015) Predicting pyrethroids target tissue exposure across ages: application of in vitro-in vivo extrapolation and physiologically based pharmacokinetic modeling. EPA-HQ-OPP-2015-0130.
  41. Mirfazaelian, A., Kim, K.B., Anand, S.S., Kim, H.J., Tornero-Velez, R., Bruckner, J.V. and Fisher, J.W. (2006) Development of a physiologically based pharmacokinetic model for deltamethrin in the adult male Sprague-Dawley rat. Toxicol. Sci., 93, 432-442. https://doi.org/10.1093/toxsci/kfl056
  42. Tornero-Velez, R., Mirfazaelian, A., Kim, K.B., Anand, S.S., Kim, H.J., Haines, W.T., Bruckner, J.V. and Fisher, J.W. (2010) Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using a PBPK model. Toxicol. Appl Pharmacol., 244, 208-217. https://doi.org/10.1016/j.taap.2009.12.034
  43. Lake, B.G. (2015) Studies on the in vitro metabolism of deltamethrin by rat and human tissue preparations. EPA-HQOPP-2015-0130.
  44. Pope, C.N., Karanth, S., Liu, J. and Yan, B. (2005) Comparative carboxylesterase activities in infant and adult liver and their in vitro sensitivity to chlorpyrifos oxon. Regul. Toxicol. Pharmacol., 42, 64-69. https://doi.org/10.1016/j.yrtph.2005.01.004

Cited by

  1. Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology vol.32, pp.1, 2016, https://doi.org/10.5487/TR.2016.32.1.001
  2. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine vol.43, pp.5, 2016, https://doi.org/10.1007/s10928-016-9492-y
  3. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays pp.1432-0738, 2017, https://doi.org/10.1007/s00204-017-2126-3
  4. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making vol.162, pp.2, 2018, https://doi.org/10.1093/toxsci/kfy010