References
- Abbas, I.A., Kumar, R. and Reen, L.S. (2014), "Response of thermal sources in transversely isotropic thermoelastic materials without energy dissipation and with two temperatures", Can. J. Phys., 92(11), 1305-11. https://doi.org/10.1139/cjp-2013-0484
- Abbas, I.A. (2011), "A two dimensional problem for a fibre- reinforced anisotropic thermoelastic halfspace with energy dissipation", Sadhana, 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5
- Attia, H.A. (2009), "Effect of Hall current on the velocity and temperature distributions of Couette flow with variable properties and uniform suction and injection", Comput. Appl. Math., 28(2), 195-212.
- Atwa, S.Y. and Jahangir, A. (2014), "Two temperature effects on plane waves in generalized ThermoMicrostretch Elastic Solid", Int. J. Thermophys., 35, 175-193. https://doi.org/10.1007/s10765-013-1541-9
- Boley, B.A. and Tolins, I.S. (1962), "Transient coupled thermoelastic boundary value problem in the half space", J. Appl. Mech., 29, 637-646. https://doi.org/10.1115/1.3640647
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: a review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two parameters", Zeitschrift fur angewandte Mathematik und Physik (ZAMP), 19, 614-627. https://doi.org/10.1007/BF01594969
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on simple heat conduction", J. Appl. Math. Phys. (ZAMP), 19, 969-70. https://doi.org/10.1007/BF01602278
- Chen, P.J., Gurtin, M.E. and Williams,W.O. (1969), "On the thermodynamics of non simple elastic materials with two temperatures", ZAMP, 20, 107-112. https://doi.org/10.1007/BF01591120
- Das, P. and Kanoria, M. (2014), "Study of finite thermal waves in a magnetothermoelastic rotating medium", J. Therm. Stress., 37(4), 405-428 https://doi.org/10.1080/01495739.2013.870847
- Dhaliwal, R.S. and Singh, A. (1980), Dynamic coupled thermoelasticity, Hindustance Publisher corp, New Delhi, India.
- Ezzat, M.A. and Awad, E.S. (2010), "Constitutive relations, uniqueness of solutionand thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures", J. Therm. Stress., 33(3), 225-250.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London Ser. A, 432, 171-194. https://doi.org/10.1098/rspa.1991.0012
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31, 189-208. https://doi.org/10.1007/BF00044969
- Honig, G. and Hirdes, U. (1984), "A method for the inversion of Laplace Transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Kaushal, S., Kumar, R. and Miglani, A. (2011), "Wave propagation in temperature rate dependent thermoelasticity with two temperatures", Math. Sci., 5, 125-146.
- Kaushal, S., Sharma, N. and Kumar, R. (2010), "Propagation of waves in generalized thermoelastic continua with two temperature", Int. J. Appl. Mech. Eng., 15, 1111- 1127.
- Kumar, R. and Devi, S. (2010), "Magnetothermoelastic (Type-II AND III) Half-Space in contact with Vacuum", Appl. Math. Sci., 69(4), 3413-3424.
- Kumar, R. and Kansal, T. (2010), "Effect of rotation on Rayleigh Lamb waves in an isotropic generalized thermoelastic diffusive plate", J. Appl. Mech. Tech. Phy, 51(5), 751-56. https://doi.org/10.1007/s10808-010-0095-x
- Kumar, R. and Mukhopdhyay, S. (2010), "Effects of thermal relaxation times on plane wave propagation under two temperature thermoelasticity", Int. J. Eng. Sci., 48(2), 128-139. https://doi.org/10.1016/j.ijengsci.2009.07.001
- Kumar, R. (2009), "Effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources", Chaos Solit. Fract., 41, 1619-1633. https://doi.org/10.1016/j.chaos.2008.07.004
- Kumar, R., Sharma, K.D. and Garg, S.K. (2014), "Effect of two temperature on reflection coefficient in micropolar thermoelastic media with and without energy dissipation", Adv. Acoust. Vib., ID 846721, 11.
- Mahmoud, S.R. (2013), "An analytical solution for effect of magnetic field and initial stress on an infinite generalized thermoelastic rotating non homogeneous diffusion medium", Abs. Appl. Anal., ID 284646,11.
- Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge.
- Quintanilla, R. (2002), "Thermoelasticity without energy dissipation of materials with microstructure", J. Appl. Math. Model., 26, 1125-1137. https://doi.org/10.1016/S0307-904X(02)00078-1
- Salem, A.M. (2007), "Hall current effects on MHD flow of a Power-Law Fluid over a rotating disk", J. Korean Phys. Soc., 50(1), 28-33. https://doi.org/10.3938/jkps.50.28
- Sarkar, N. and Lahiri, A. (2012), "Temperature rate dependent generalized thermoelasticity with modified Ohm's law", Int. J. Comput. Mater. Sci. Eng., 1(4), 23.
- Sharma, K. and Bhargava, R.R. (2014), "Propagation of thermoelastic plane waves at an imperfect boundary of thermal conducting viscous liquid/generalized thermolastic solid", Afika Mathematika, 25, 81-102.
- Sharma, K. and Marin, M. (2013), "Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", U.P.B. Sci. Bull Series, 75(2), 121-132.
- Sharma, K. and Kumar, P. (2013), "Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids", J. Therm. Stress., 36, 94-111. https://doi.org/10.1080/01495739.2012.720545
- Sharma, N. and Kumar, R. (2012), "Elastodynamics of an axi-symmetric problem in generalised thermoelastic diffusion", Int. J. Adv. Sci. Tech. Res., 2(3), 478-492.
- Sharma, N., Kumar, R. and Ram, P. (2012), "Interactions of generalised thermoelastic diffusion due to inclined load", Int. J. Emer. Trend. Eng. Develop., 5(2), 583-600.
- Sharma, S., Sharma, K. and Bhargava, R.R. (2013), "Effect of viscousity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory Type-II and Type-III", Mater. Phys. Mech., 16, 144-158.
- Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar.
- Warren, W.E. and Chen, P.J. (1973), "Wave propagation in the two temperature theory of thermoelasticity", Acta Mechanica, 16, 21-33. https://doi.org/10.1007/BF01177123
- Youssef, H.M. (2006), "Theory of two temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101
- Youssef, H.M. and AI-Lehaibi, E.A. (2007), "State space approach of two temperature generalized thermoelasticity of one dimensional problem", Int. J. Solid. Struct., 44, 1550- 1562. https://doi.org/10.1016/j.ijsolstr.2006.06.035
- Youssef, H.M. and AI-Harby, A.H. (2007), "State space approach of two temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal loading", J. Arch. Appl. Mech., 77(9), 675-687. https://doi.org/10.1007/s00419-007-0120-6
- Youssef, H.M. (2011), "Theory of two - temperature thermoelasticity without energy dissipation", J. Therm. Stress., 34, 138-146. https://doi.org/10.1080/01495739.2010.511941
- Youssef, H.M. (2013), "Variational principle of two-temperature thermoelasticity without energy dissipation", J. Thermoelast., 1(1), 42-44.
- Zakaria, M. (2012), "Effects of hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating", Int. J. Electrom. Appl., 2(3), 24-32. https://doi.org/10.5923/j.ijea.20120203.02
- Zakaria, M. (2014), "Effect of hall current on generalized magneto-thermoelasticity micropolar solid subjected to ramp-type heating", Int. Appl. Mech., 50(1), 92-104. https://doi.org/10.1007/s10778-014-0615-0
Cited by
- Fractional Green–Naghdi theory for thermoelectric MHD pp.1745-5049, 2018, https://doi.org/10.1080/17455030.2018.1459061
- Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.221
- Effect of magnetic field on wave propagation in cylindrical poroelastic bone with cavity vol.61, pp.4, 2016, https://doi.org/10.12989/sem.2017.61.4.539
- A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.089
- Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.113
- Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium vol.27, pp.4, 2018, https://doi.org/10.12989/scs.2018.27.4.439
- Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources vol.8, pp.5, 2016, https://doi.org/10.12989/csm.2019.8.5.415
- Time harmonic interactions in fractional thermoelastic diffusive thick circular plate vol.8, pp.1, 2019, https://doi.org/10.12989/csm.2019.8.1.039
- Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source vol.8, pp.2, 2016, https://doi.org/10.12989/amr.2019.8.2.083
- Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources vol.8, pp.3, 2016, https://doi.org/10.12989/csm.2019.8.3.219
- Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load vol.33, pp.1, 2016, https://doi.org/10.12989/scs.2019.33.1.123
- Effects of nonlocality and two temperature in a nonlocal thermoelastic solid due to ramp type heat source vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2020.1825157
- Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity vol.73, pp.6, 2016, https://doi.org/10.12989/sem.2020.73.6.725
- Time harmonic interactions in non local thermoelastic solid with two temperatures vol.74, pp.3, 2016, https://doi.org/10.12989/sem.2020.74.3.341
- Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory vol.36, pp.3, 2016, https://doi.org/10.12989/scs.2020.36.3.249
- Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources vol.9, pp.4, 2016, https://doi.org/10.12989/csm.2020.9.4.343
- Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives vol.9, pp.5, 2020, https://doi.org/10.12989/csm.2020.9.5.397
- A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2016, https://doi.org/10.12989/mwt.2020.11.6.399
- The effects due to a uniformly distributed load in a non-local thermoelastic solid in a frequency domain vol.1033, pp.None, 2016, https://doi.org/10.1088/1757-899x/1033/1/012081
- 2D Quasi-Static Accurate Solutions for Isotropic Thermoelastic Materials with Applications vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/8825226
- Thermomechanical deformation in a transversely isotropic magneto-thermoelastic rotating solids under initial stress vol.3, pp.None, 2016, https://doi.org/10.1016/j.padiff.2021.100028