참고문헌
- Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45, 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Dexter, R.J., Pilarski, P.J. and Mahmoud, H.N. (2003), "Analysis of crack propagation in welded stiffened panels", Int. J. Fatig., 25, 1169-1174. https://doi.org/10.1016/j.ijfatigue.2003.08.006
- Dolbow, J., Moes, N. and Belytschko, T. (2000), "Discontinuous enrichment in finite elements with a partition of unity method", Finite Elem. Anal. Des., 36, 235-260. https://doi.org/10.1016/S0168-874X(00)00035-4
- Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85, 519-527. https://doi.org/10.1115/1.3656897
- Jamal-Omidi, M., Falah, M. and Taherifar, D. (2014), "3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM", Struct. Eng. Mech., 50(4), 525-539. https://doi.org/10.12989/sem.2014.50.4.525
- Jiang, S.Y., Du, C.B. and Gu, C.S. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597
- Kocanda, D. and Jasztal, M. (2012), "Probabilistic predicting the fatigue crack growth under variable amplitude loading", Int. J. Fatig., 39, 68-74. https://doi.org/10.1016/j.ijfatigue.2011.03.011
- Mahmoud, H.N. and Dexter, R.J. (2005), "Propagation rate of large cracks in stiffened panels under tension loading", Mar. Struct., 18(3), 265-288. https://doi.org/10.1016/j.marstruc.2005.09.001
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
- Meng, Q. and Wang, Z. (2014), "Extenede finite element method for power law creep crack growth", Eng. Fract. Mech., 127, 148-160. https://doi.org/10.1016/j.engfracmech.2014.06.005
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Murakami (1986), "Stress intensity factor handbook", Pergamon press.
- Natarajan, S., Kerfriden, P., Roy Mahapatra, D. and Bordas, S.P.A. (2014), "Numerical analysis of the inclusion-crack interaction by the extended finite element method", Int. J. Comput. Meth. Eng. Sci. Mech., 15, 26-32. https://doi.org/10.1080/15502287.2013.833999
- Nechval, K.N., Nechval, N.A., Bausova, I., Skiltere, D. and Strelchonok, V.F. (2006), "Prediction of fatigue crack growth process via artificial neural network process", Int. J. Comput., 5(3), 21-32.
- Paris, P., Gomez, M. and Anderson, W. (1961), "A rational analytic theory of fatigue", Trend Eng., 13, 9-14.
- Pathak, H., Singh, A. and Vir Singh, I. (2013), "Fatigue crack growth simulations of 3-D problems using XFEM", Int. J. Mech. Sci., 76, 112-131. https://doi.org/10.1016/j.ijmecsci.2013.09.001
- Rama Chandra Murthy, A., Palani, G.S. and Iyer, N.R. (2007), "Remaining life prediction of cracked stiffened panels under constant and variable amplitude loading", Int. J. Fatig., 29(6), 1125-1139. https://doi.org/10.1016/j.ijfatigue.2006.09.016
- Rama Chandra Murthy, A., Palani, G.S. and Iyer, N.R. (2009a), "Damage tolerant evaluation of cracked stiffened panels subjected to fatigue loading", Sadhana, 37(1), 171-186.
- Rama Chandra Murthy, A., Palani, G.S. and Iyer, N.R. (2009b), "Residual strength evaluation of unstiffened and stiffened panels under fatigue loading", SDHM, 5(3), 201-226.
- Rasuo, B., Grbovic, A. and Petrasinovic, D. (2013), "Investigation of fatigue life of 2024-T3 aluminium spar using extended finite element method (XFEM) ", SAE Int. J. Aerosp., 6(2), 408-416. https://doi.org/10.4271/2013-01-2143
- Rooke, D.P. and Cartwright, D.J. (1976), Compendium of Stress Intensity Factors, Her Majesty's Stationary Office, London.
- Sabelkin, V., Mall, S. and Avram, A.V. (2006), "Fatigue crack growth analysis of stiffened cracked panel repaired with bonded composite patch", Eng. Fract. Mech., 73, 1553-1567. https://doi.org/10.1016/j.engfracmech.2006.01.029
- Sharma, K., Singh, I.V., Mishra, B.K. and Shedbale, A.S. (2014), "The effect of inhomogeneities on an edge crack: A numerical study using XFEM", Int. J. Comput. Meth. Eng. Sci. Mech., 14, 505-523.
- Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatig., 36, 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010
- Stolarska, M., Chopp, D.L., Moes, N. and Belyschko, T. (2001), "Modelling crack growth by level sets in the extended finite element method", Int. J. Numer. Meth. Eng., 51, 943-960. https://doi.org/10.1002/nme.201
- Tanaka, K. (1974), "Fatigue crack propagation from a crack inclined to the cyclic tension axis", Eng. Fract. Mech., 6, 493-507. https://doi.org/10.1016/0013-7944(74)90007-1
- Tong, P. and Pian, T.H. (1973), "On the convergence of the finite element method for problems with singularity", Int. J. Solid. Struct., 9, 313-321. https://doi.org/10.1016/0020-7683(73)90082-6
- Yau, J., Wang, S. and Corten, H. (1980), "A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity", J. Appl. Mech., 47, 335-341. https://doi.org/10.1115/1.3153665
피인용 문헌
- FE simulation of S-N curves for a riveted connection using two-stage fatigue models vol.2, pp.4, 2016, https://doi.org/10.12989/acd.2017.2.4.333
- Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.037
- Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2016, https://doi.org/10.12989/sem.2020.73.4.455