References
- Botelho, E.C., Silva, R.A., Pardini, L.C. and Rezende, M.C. (2006), "A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures", Mater Res., 9, 247-256. https://doi.org/10.1590/S1516-14392006000300002
- Carrillo, J.G. and Cantwell, W.J. (2007), "Scaling effects in the tensile behavior of fiber-metal laminates", Compos. Sci. Technol., 67, 1684-1693. https://doi.org/10.1016/j.compscitech.2006.06.018
- Fan, H.G., Chen, Z.P., Feng, W.Z., Zhou, F., Shen, X.L., Cao, G.W. (2015), "Buckling of axial compressed cylindrical shells with stepwise variable thickness", Struct. Enging. Mech., 54(1), 87-103. https://doi.org/10.12989/sem.2015.54.1.087
- Heidari-Rarani, M., Khalkhali-Sharifi, S.S., Shokrieh, M.M. (2014), "Effect of ply stacking sequence on buckling behavior of E-glass/epoxy laminated composites", Comput. Mater. Sci., 89, 89-96. https://doi.org/10.1016/j.commatsci.2014.03.017
- Hosseini Hashemi, S.H., Atashipour, S.R., Fadaee, M. and Girhammar, U.A. (2012), "An exact closed form procedure for free vibration analysis of laminated spherical shell panels based on Sanders theory", Arch. Appl. Mech., 82, 985-1002. https://doi.org/10.1007/s00419-011-0606-0
- Kardomateas, G.A. (1996), "Benchmark three dimensional elasticity solutions for the buckling of thick orthotropic cylindrical shells", Compos. Part B, 27, 569-580. https://doi.org/10.1016/1359-8368(95)00011-9
- Khalili, S.M.R., Malekzadeh, K., Davar, A. and Mahajan, P. (2010), "Dynamic response of pre-stressed fibre metal laminate (FML) circular cylindrical shells subjected to lateral pressure pulse loads", Compos. Struct., 92, 1308-1317. https://doi.org/10.1016/j.compstruct.2009.11.012
- Khdeir, A.A., Reddy, J.N. and Frederick, D.A. (1989), "study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories", Int. J. Eng. Sci., 27, 1337-1351. https://doi.org/10.1016/0020-7225(89)90058-X
- Krishnakumar, S. (1994), "Fiber metal laminates-the synthesis of metals and composites", Mater Manuf. Pr., 9, 295-354. https://doi.org/10.1080/10426919408934905
- Li, X. and Chen, Y. (2002), "Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure", J. Sound Vib., 257, 967-976. https://doi.org/10.1006/jsvi.2002.5259
- Mandal, P. and Calladine, C.R. (2000), "Buckling of thin cylindrical shells under axial compression", Int. J. Solid. Struct., 37, 4509-4525. https://doi.org/10.1016/S0020-7683(99)00160-2
- Nam, H.W., Jung, S.W., Jung, C.K. and Han, K.S. (2003), "A model of damage initiation in singly oriented ply fiber metal laminate under concentrated loads", J. Compos. Mater, 37, 269-281. https://doi.org/10.1177/0021998303037003497
- Payeganeh, G.H., Ghasemi, F.A. and Malekzadeh, K. (2010), "Dynamic responseof fiber metal laminates (FMLs) subjected to low-velocity impact", Thin Wall Struct., 48, 62-70. https://doi.org/10.1016/j.tws.2009.07.005
- Reddy, J.N. (2003), Mechanics of laminated composite plates and shells: theory and analysis, CRC Press, New York.
- Sadd, M.H., (2009), Elasticity Theory, Applications and Numerics, Elsevier Inc, USA.
- Shen Shen, H. and Xiang, Y. (2008), "Buckling and post buckling of anisotropic laminated cylindrical shells under combined axial compression and torsion", Compos. Struct., 84, 375-386. https://doi.org/10.1016/j.compstruct.2007.10.002
- Shi, G. and Xiong, Y. (2000), "Probabilistic buckling analysis of fiber metal laminates under shear loading condition", Adv. Eng. Softw., 31, 519-527. https://doi.org/10.1016/S0965-9978(00)00013-2
- Silvestre, N. (2008), "Buckling behaviour of elliptical cylindrical shells and tubes under compression", Int. J. Solid. Struct., 45, 4427-4447. https://doi.org/10.1016/j.ijsolstr.2008.03.019
- Sinmazcelik, T., Avcu, E., Ozgur Bora, M. and Coban, O. (2011), "A review: Fibre metal laminates, background, bonding types and applied test methods", Mater. Des., 32, 3671-3685. https://doi.org/10.1016/j.matdes.2011.03.011
- Tahir, Z.R. and Mandal, P. (2012), "A new perturbation technique in numerical study on buckling of composite shells under axial compression", World Acad. Sci. Eng. Technol., 70, 10-27.
- Topal, U. and Uzman, V. (2009), "Thermal buckling load optimization of angle-ply laminated cylindrical shells", Mater. Des., 30, 532-536. https://doi.org/10.1016/j.matdes.2008.05.052
- Tvergaard, V. and Needleman, A. (2000), "Buckling localization in a cylindrical panel under axial compression", Int. J. Solid. Struct., 37, 6825-6842. https://doi.org/10.1016/S0020-7683(99)00316-9
- Ugural, A.C. (1981), Stresses in plate and shells, McGraw-Hill, USA.
- Ungbhakorn, V. and Singhatanadgid, P. (2003), "Similitude and physical modeling for buckling and vibration of symmetric cross-ply laminated circular cylindrical shells", J. Compos. Mater., 37, 1697-1712. https://doi.org/10.1177/002199803035191
- Vinson, J.R. (1993), The mechanical behaviour of shells composed of isotropic and composite materials, Kluwer academic publishers, Dordrecht (Boston, London).
- Vlot, A., Alderliesten, R., Hooijmeijer, P., de Kanter, J., Sinke, J. and Ypma, M. (2002), "Fibre metal laminates: a state of the art", Int. J. Mater. Prod. Technol., 17, 79-98. https://doi.org/10.1504/IJMPT.2002.001301
- Vlot, A. and Gunnink, J.W. (2001), Fibre metal laminates-an introduction, Kluwer Academic Publishers, Dordrecht, Boston, London.
Cited by
- Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
- Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1472337
- Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection vol.30, pp.4, 2019, https://doi.org/10.12989/scs.2019.30.4.305