DOI QR코드

DOI QR Code

Partial Discharge Characteristics on Protrusion Defects in SF6-N2 Mixture Gases

SF6-N2 혼합가스 중 돌출 결함의 부분방전 특성

  • Jo, Hyang-Eun (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Wang, Guoming (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kim, Sun-Jae (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Park, Kyoung-Soo (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kil, and Gyung-Suk (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
  • 조향은 (한국해양대학교 전기전자공학과) ;
  • 왕국명 (한국해양대학교 전기전자공학과) ;
  • 김선재 (한국해양대학교 전기전자공학과) ;
  • 박경수 (한국해양대학교 전기전자공학과) ;
  • 길경석 (한국해양대학교 전기전자공학과)
  • Received : 2015.11.18
  • Accepted : 2015.12.04
  • Published : 2016.01.01

Abstract

Studies on a $SF_6$-mixture and -alternative gas has been in progress to reduce the use of $SF_6$ gas as an insulation material of GIS (gas insulated switchgears). In this paper, we dealt with PD (partial discharge) characteristics in pure $SF_6$ and $N_2$, and their mixtures on aspects of insulation design and risk assessment for GIS. A POC (protrusion on conductor) and a POE (protrusion on enclosure) as the major defects were fabricated to simulate PD. We analyzed the DIV (discharge inception voltage), DEV (discharge extinction voltage), pulse magnitude, counts and phase distribution of PD pulse in $SF_6-N_2$ mixtures ($SF_6$ 100%, $SF_6$ 80%-$N_2$ 20%, $SF_6$ 50%-$N_2$ 50%, $SF_6$ 20%-$N_2$ 80%, and $N_2$ 100%) according to the IEC60270. The DIV, DEV as well as magnitude of PD pulse decreased on the POC as increase of $N_2$ ratio. For the POE, the DIV and DEV in $N_2$ ratio below 50% were the same voltages as those in $SF_6$ 100%. In this experiment, $SF_6$ 80%-$N_2$ 20% mixture could be considered with the equivalent insulation performance to a GIS.

Keywords

References

  1. S. J. Kim, H. E. Jo, G. W. Jeong, G. S. Kil, and S. W. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 40 (2015).
  2. S. Okabe, J. Wada, and G. Ueta, IEEE Transactions on Dielectrics and Electrical Insulation, 22, 2108 (2015). [DOI: http://dx.doi.org/10.1109/TDEI.2015.005040]
  3. H. E. Jo, S. J. Kim, G. W. Jeong, and G. S. Kil, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 320 (2015).
  4. M. S. Kim, S. J. Kim, G. W. Jeong, H. E. Jo, and G. S. Kil, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 238 (2014).
  5. M. S. Naidu and V. Kamaraju, High Voltage Engineering 4th ed. (McGraw.Hill Companies, India, 2009) p. 56.
  6. H. E. Jo, S. J. Kim, G. W. Jeong, and G. S. Kil, and Y. M. Kim, CMD2014, 569.
  7. N. Hayakawa, Y. Sugimori, and H. Okubo, Proc. of 2005 International Symposium on Electrical Insulating Materials, 812. [DOI: http://dx.doi.org/10.1109/ISEIM.2005.193500]
  8. W. B. Suh, J. Y. Yim, K. D. Song, Y. M. Chang, and D. H. Bae, 1st International Conference on Electric Power Equipment-Switching Technology (Electric Power Equipment - Switching Technology, ICEPE-ST, Xi'an, China, 2011) p. 366. [DOI: http://dx.doi.org/10.1109/ICEPE-ST.2011.6123009]
  9. Y. Yoshitake, N. Hayakawa, T. Ueda, and H. Okubo, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 793 (2002). [DOI: http://dx.doi.org/10.1109/CEIDP.2002.1048915]
  10. T. Yamada, T. Ishida, N. Hayakawa, and H. Okubo, IEEE Transactions on Dielectrics and Electrical Insulation, 8, 137 (2001). [DOI: http://dx.doi.org/10.1109/94.910436]
  11. S. S. Tezcan, M. S. Dincer, and H. R. Hiziroglu, Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Electrical Insulation and Dielectric Phenomena, 2006 IEEE Conference, Kansas City, USA, 2006) p. 222. [DOI: http://dx.doi.org/10.1109/CEIDP.2006.312101]