DOI QR코드

DOI QR Code

Effects of Soft Baking Temperature on the Properties of Solution Processed Zn-Sn-O Thin-Film Transistors

소프트 베이킹 온도가 용액기반 Zn-Sn-O 박막 트랜지스터의 전기적 특성에 미치는 영향

  • Lee, Jae-Won (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2015.11.05
  • Accepted : 2015.12.04
  • Published : 2016.01.01

Abstract

In this study, the effects of soft baking temperature on the solution derived ZTO (Zn-Sn-O) TFTs (thin-film transistors) as a In-free oxide semiconductor were investigated. In spite of the same hard baking at high temperature($600^{\circ}C$), the electrical properties of ZTO TFT was greatly changed by a small difference in soft baking temperature($180{\sim}250^{\circ}C$). The performance of TFT was deteriorated as the soft baking temperature increased. Therefore, it is important to remove the water-related defects well as organic impurities from the ZTO films during soft baking for fabrication of solution-derived high performance of TFTs.

Keywords

References

  1. S. H. Jeong, Y. M. Jeong, and J. H. Moon, J. Phys. Chem. Lett., 112, 11082 (2008). [DOI: http://dx.doi.org/10.1021/jp803475g]
  2. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: http://dx.doi.org/10.1002/adma.201103228]
  3. S. Y. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, Thin Solid Films, 519, 5146 (2011). [DOI: http://dx.doi.org/10.1016/j.tsf.2011.01.074]
  4. J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H. W. Lee, S. W. Han, and H. K. Baik, Appl. Mater. Interf, 5, 8067 (2013). [DOI: http://dx.doi.org/10.1021/am402153g]
  5. J. S. Lee, S. M. Song, Y. H. Kim, J. Y. Kwon, and M. K. Han, Phys. Status Solidi. A, 210, 1745 (2013).
  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090]
  7. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys., 45, 4303 (2006). [DOI: http://dx.doi.org/10.1143/JJAP.45.4303]
  8. G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, J. Electrochem. Soc., 156, H7 (2009). [DOI: http://dx.doi.org/10.1149/1.2976027]
  9. P. T. Tue, T. Miyasako, J. Li, H. T. C. Tu, S. Inoue, E. Tokumitsu, and T. Shimoda, IEEE Trans. Electron Devices, 60, 320 (2013). [DOI: http://dx.doi.org/10.1109/TED.2012.2227483]
  10. C. J. Brinker, A. J. Hurd, P. R. Schunk, G. C. Frye, and C. S. Ashley, J. Non-Cryst. Solids, 147, 424 (1992). [DOI: http://dx.doi.org/10.1016/S0022-3093(05)80653-2]
  11. L. F. Francis, Mater. Manuf. Proc., 12, 963 (1997). [DOI: http://dx.doi.org/10.1080/10426919708935200]
  12. J. M. Kwon, J. Jung, Y. S. Rim, D. L. Kim, and H. J. Kim. ACS Appl. Mater. Interfaces, 6, 3371 (2014). [DOI: http://dx.doi.org/10.1021/am4054139]
  13. L. Lu, M. Echizen, T. Nishida, Y. Ishikawa, K. Uchiyama, and Y. Uraoka, AIP Adv., 2, 032111 (2012). [DOI: http://dx.doi.org/10.1063/1.4739052]
  14. J. F. Conley, IEEE Trans. Device Mater. Reliab., 10, 460 (2010). [DOI: http://dx.doi.org/10.1109/TDMR.2010.2069561]
  15. A. Nathan, S. Lee, S. Jeon, and J. Robertson, J. Display Tech., 10, 917 (2014). [DOI: http://dx.doi.org/10.1109/JDT.2013.2292580]
  16. S. S. Lee, K. Ghaffarzadeh, A. Nathan, J. Robertson, S. H. Jeon, C. J. Kim, I. H. Song, and U. I. Chung, Appl. Phys. Lett, 98, 203508 (2011). [DOI: http://dx.doi.org/10.1063/1.3589371]
  17. X. M. Huang, C. F. Wu, H. Lu, F. F. Ren, D. J. Chen, R. Jiang, R. Zhang, Y. D. Zheng, and Q. Y. Xu, Solid-State Electron, 86, 41 (2013). [DOI: http://dx.doi.org/10.1016/j.sse.2013.04.025]
  18. J. Robertson, J. Non-Cryst. Solids, 358, 2437 (2012). [DOI: http://dx.doi.org/10.1016/j.jnoncrysol.2011.12.012]