DOI QR코드

DOI QR Code

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

  • Jung, Ji-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School) ;
  • Lee, Sang-Yoon (Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Kim, Dong-Hyun (Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Kim, Hee-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
  • Received : 2015.08.17
  • Accepted : 2015.09.04
  • Published : 2016.01.01

Abstract

Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.

Keywords

References

  1. Alam, J. and Cook, J. L. (2007) How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am. J. Respir. Cell Mol. Biol. 36, 166-174. https://doi.org/10.1165/rcmb.2006-0340TR
  2. Cheng, Y., Shen, L. H. and Zhang, J. T. (2005) Anti-amnestic and antiaging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol. Sin. 26, 143-149. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  3. Dallerac, G., Chever, O. and Rouach, N. (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159.
  4. Hou, J., Xue, J., Lee, M., Yu, J. and Sung, C. (2014) Long-term administration of Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. Int. J. Mol. Med. 33, 234-240. https://doi.org/10.3892/ijmm.2013.1552
  5. Jaiswal, A. K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Rad. Biol. Med. 36, 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  6. Jung, J. S., Kim, D. H. and Kim, H. S. (2010a) Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFNgamma- stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem. Biophys. Res. Commun. 397, 323- 328. https://doi.org/10.1016/j.bbrc.2010.05.117
  7. Jung, J. S., Shin, J. A., Park, E. M., Lee, J. E., Kang, Y. S., Min, S. W., Kim, D. H., Hyun, J. W., Shin, C. Y. and Kim, H. S. (2010b) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide- stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J. Neurochem. 115, 1668-1680. https://doi.org/10.1111/j.1471-4159.2010.07075.x
  8. Jung, J. S., Ahn, J. H., Le, T. K., Kim, D. H. and Kim, H. S. (2013) Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells. Neurochem. Int. 63, 80-86. https://doi.org/10.1016/j.neuint.2013.05.002
  9. Lee, E. J., Ko, H. M., Jeong, Y. H., Park, E. M. and Kim, H. S. (2015a) Beta-lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133. https://doi.org/10.1186/s12974-015-0355-z
  10. Lee, J. M. and Johnson, J. A. (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37, 139-143. https://doi.org/10.5483/BMBRep.2004.37.2.139
  11. Lee, S. Y., Jeong, J. J., Eun, S. H. and Kim, D. H. (2015b) Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induded colitis. Eur. J. Pharmacol. 762, 333-343. https://doi.org/10.1016/j.ejphar.2015.06.011
  12. Li, J., Du, J., Liu, D., Cheng, B., Fang, F., Weng, L., Wang, C. and Ling, C. (2014) Ginsenoside Rh1 potentiates dexamethasone's anti-inflammatory effects for chronic inflammatory disease by reversing dexamethasone-induced resistance. Arthritis Res. Ther. 16, R106. https://doi.org/10.1186/ar4556
  13. Niture, S. K., Kaspar, J. W., Shen, J. and Jaiswal, A. K. (2010) Nrf2 signaling and cell survival. Toxicol. App. Pharmacol. 244, 37-42. https://doi.org/10.1016/j.taap.2009.06.009
  14. Park, E. K., Choo, M. K., Han, M. J. and Kim, D. H. (2004) Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immunol. 133, 113-120 https://doi.org/10.1159/000076383
  15. Park, J. S., Park, E. M., Kim, D. H., Jung, K., Jung, J. S., Lee, E. J., Hyun, J. W., Kang, J. L. and Kim H. S. (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209, 40-49. https://doi.org/10.1016/j.jneuroim.2009.01.020
  16. Park, J. S., Jung, J. S., Jeong, Y. H., Hyun, J. W., Le, T. K., Kim, D. H., Choi, E. C. and Kim, H. S. (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J. Neurochem. 119, 909-919. https://doi.org/10.1111/j.1471-4159.2011.07395.x
  17. Park, J. S. and Kim, H. S. (2014) Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinonestimulated rat primary astrocytes. Biochem. Biophys. Res. Commun. 447, 672-677. https://doi.org/10.1016/j.bbrc.2014.04.073
  18. Qin, L., Block, M. L., Liu, Y., Bienstock, R. J., Pei, Z., Zhang, W., Wu, X., Wilson, B., Burka, T. and Hong, J. S. (2005) Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 19, 550-557. https://doi.org/10.1096/fj.04-2857com
  19. Shin, Y. W., Bae, E. A., Kim, S. S., Lee, Y. C., Lee, B. Y. and Kim, D. H. (2006) The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone- induced mouse dermatitis models. Planta Med. 72, 376-378. https://doi.org/10.1055/s-2005-916217
  20. Sofroniew, M. V. and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta Neuropathol. 119, 7-35. https://doi.org/10.1007/s00401-009-0619-8
  21. Sun, Z., Huang, Z. and Zhang, D. D. (2009) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4:e6588. https://doi.org/10.1371/journal.pone.0006588
  22. Syapin, P. J. (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br. J. Pharmacol. 155, 623-640.
  23. Vargas, M. R. and Johnson, J. A. (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev. Mol. Med. 11, e17. https://doi.org/10.1017/S1462399409001094
  24. Venugopal, R. and Jaiswal, A. K. (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17, 3145-3156. https://doi.org/10.1038/sj.onc.1202237
  25. Wang, Y. Z., Chen, J., Chu, S. F., Wang, Y. S., Wang, X. Y., Chen, N. H. and Zhang, J. T. (2009) Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1's metabolites ginsenoside Rh1 and protopanaxatriol. J. Pharmacol. Sci. 109, 504-510. https://doi.org/10.1254/jphs.08060FP
  26. Zhang, M., An, C., Gao, Y., Leak, R. K., Chen, J. and Zhang, F. (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100, 30-47. https://doi.org/10.1016/j.pneurobio.2012.09.003
  27. Zheng, H., Jeong, Y., Song, J. and Ji, G. E. (2011) Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitislike lesions induced by oxazolone in hairless mice. Int. Immunopharmacol. 11, 511-518. https://doi.org/10.1016/j.intimp.2010.12.022
  28. Zhu, D., Wu, L. and Li, C. R. (2009) Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J. Cell Biochem. 108, 117-124 https://doi.org/10.1002/jcb.22233

Cited by

  1. Ginsénoside Rh1 et amélioration du cognitif 2017, https://doi.org/10.1007/s10298-017-1157-5
  2. Effect of polysaccharides from a Korean ginseng berry on the immunosenescence of aged mice 2017, https://doi.org/10.1016/j.jgr.2017.04.014
  3. Cellular stress response mechanisms as therapeutic targets of ginsenosides 2018, https://doi.org/10.1002/med.21450
  4. Protective effect of CDDO-ethyl amide against high-glucose-induced oxidative injury via the Nrf2/HO-1 pathway vol.17, pp.7, 2017, https://doi.org/10.1016/j.spinee.2017.03.015
  5. Panax ginseng and Panax quinquefolius : From pharmacology to toxicology vol.107, 2017, https://doi.org/10.1016/j.fct.2017.07.019
  6. Exposure of keratinocytes to non-thermal dielectric barrier discharge plasma increases the level of 8-oxoguanine via inhibition of its repair enzyme vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7454
  7. Nrf2–ARE Signaling Acts as Master Pathway for the Cellular Antioxidant Activity of Fisetin vol.24, pp.4, 2019, https://doi.org/10.3390/molecules24040708
  8. Ginsenoside Rh1 Exerts Neuroprotective Effects by Activating the PI3K/Akt Pathway in Amyloid-β Induced SH-SY5Y Cells vol.11, pp.12, 2021, https://doi.org/10.3390/app11125654