References
- Alam, J. and Cook, J. L. (2007) How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am. J. Respir. Cell Mol. Biol. 36, 166-174. https://doi.org/10.1165/rcmb.2006-0340TR
- Cheng, Y., Shen, L. H. and Zhang, J. T. (2005) Anti-amnestic and antiaging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol. Sin. 26, 143-149. https://doi.org/10.1111/j.1745-7254.2005.00034.x
- Dallerac, G., Chever, O. and Rouach, N. (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159.
- Hou, J., Xue, J., Lee, M., Yu, J. and Sung, C. (2014) Long-term administration of Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. Int. J. Mol. Med. 33, 234-240. https://doi.org/10.3892/ijmm.2013.1552
- Jaiswal, A. K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Rad. Biol. Med. 36, 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
- Jung, J. S., Kim, D. H. and Kim, H. S. (2010a) Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFNgamma- stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem. Biophys. Res. Commun. 397, 323- 328. https://doi.org/10.1016/j.bbrc.2010.05.117
- Jung, J. S., Shin, J. A., Park, E. M., Lee, J. E., Kang, Y. S., Min, S. W., Kim, D. H., Hyun, J. W., Shin, C. Y. and Kim, H. S. (2010b) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide- stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J. Neurochem. 115, 1668-1680. https://doi.org/10.1111/j.1471-4159.2010.07075.x
- Jung, J. S., Ahn, J. H., Le, T. K., Kim, D. H. and Kim, H. S. (2013) Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells. Neurochem. Int. 63, 80-86. https://doi.org/10.1016/j.neuint.2013.05.002
- Lee, E. J., Ko, H. M., Jeong, Y. H., Park, E. M. and Kim, H. S. (2015a) Beta-lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133. https://doi.org/10.1186/s12974-015-0355-z
- Lee, J. M. and Johnson, J. A. (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37, 139-143. https://doi.org/10.5483/BMBRep.2004.37.2.139
- Lee, S. Y., Jeong, J. J., Eun, S. H. and Kim, D. H. (2015b) Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induded colitis. Eur. J. Pharmacol. 762, 333-343. https://doi.org/10.1016/j.ejphar.2015.06.011
- Li, J., Du, J., Liu, D., Cheng, B., Fang, F., Weng, L., Wang, C. and Ling, C. (2014) Ginsenoside Rh1 potentiates dexamethasone's anti-inflammatory effects for chronic inflammatory disease by reversing dexamethasone-induced resistance. Arthritis Res. Ther. 16, R106. https://doi.org/10.1186/ar4556
- Niture, S. K., Kaspar, J. W., Shen, J. and Jaiswal, A. K. (2010) Nrf2 signaling and cell survival. Toxicol. App. Pharmacol. 244, 37-42. https://doi.org/10.1016/j.taap.2009.06.009
- Park, E. K., Choo, M. K., Han, M. J. and Kim, D. H. (2004) Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immunol. 133, 113-120 https://doi.org/10.1159/000076383
- Park, J. S., Park, E. M., Kim, D. H., Jung, K., Jung, J. S., Lee, E. J., Hyun, J. W., Kang, J. L. and Kim H. S. (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209, 40-49. https://doi.org/10.1016/j.jneuroim.2009.01.020
- Park, J. S., Jung, J. S., Jeong, Y. H., Hyun, J. W., Le, T. K., Kim, D. H., Choi, E. C. and Kim, H. S. (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J. Neurochem. 119, 909-919. https://doi.org/10.1111/j.1471-4159.2011.07395.x
- Park, J. S. and Kim, H. S. (2014) Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinonestimulated rat primary astrocytes. Biochem. Biophys. Res. Commun. 447, 672-677. https://doi.org/10.1016/j.bbrc.2014.04.073
- Qin, L., Block, M. L., Liu, Y., Bienstock, R. J., Pei, Z., Zhang, W., Wu, X., Wilson, B., Burka, T. and Hong, J. S. (2005) Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 19, 550-557. https://doi.org/10.1096/fj.04-2857com
- Shin, Y. W., Bae, E. A., Kim, S. S., Lee, Y. C., Lee, B. Y. and Kim, D. H. (2006) The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone- induced mouse dermatitis models. Planta Med. 72, 376-378. https://doi.org/10.1055/s-2005-916217
- Sofroniew, M. V. and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta Neuropathol. 119, 7-35. https://doi.org/10.1007/s00401-009-0619-8
- Sun, Z., Huang, Z. and Zhang, D. D. (2009) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4:e6588. https://doi.org/10.1371/journal.pone.0006588
- Syapin, P. J. (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br. J. Pharmacol. 155, 623-640.
- Vargas, M. R. and Johnson, J. A. (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev. Mol. Med. 11, e17. https://doi.org/10.1017/S1462399409001094
- Venugopal, R. and Jaiswal, A. K. (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17, 3145-3156. https://doi.org/10.1038/sj.onc.1202237
- Wang, Y. Z., Chen, J., Chu, S. F., Wang, Y. S., Wang, X. Y., Chen, N. H. and Zhang, J. T. (2009) Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1's metabolites ginsenoside Rh1 and protopanaxatriol. J. Pharmacol. Sci. 109, 504-510. https://doi.org/10.1254/jphs.08060FP
- Zhang, M., An, C., Gao, Y., Leak, R. K., Chen, J. and Zhang, F. (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100, 30-47. https://doi.org/10.1016/j.pneurobio.2012.09.003
- Zheng, H., Jeong, Y., Song, J. and Ji, G. E. (2011) Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitislike lesions induced by oxazolone in hairless mice. Int. Immunopharmacol. 11, 511-518. https://doi.org/10.1016/j.intimp.2010.12.022
- Zhu, D., Wu, L. and Li, C. R. (2009) Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J. Cell Biochem. 108, 117-124 https://doi.org/10.1002/jcb.22233
Cited by
- Ginsénoside Rh1 et amélioration du cognitif 2017, https://doi.org/10.1007/s10298-017-1157-5
- Effect of polysaccharides from a Korean ginseng berry on the immunosenescence of aged mice 2017, https://doi.org/10.1016/j.jgr.2017.04.014
- Cellular stress response mechanisms as therapeutic targets of ginsenosides 2018, https://doi.org/10.1002/med.21450
- Protective effect of CDDO-ethyl amide against high-glucose-induced oxidative injury via the Nrf2/HO-1 pathway vol.17, pp.7, 2017, https://doi.org/10.1016/j.spinee.2017.03.015
- Panax ginseng and Panax quinquefolius : From pharmacology to toxicology vol.107, 2017, https://doi.org/10.1016/j.fct.2017.07.019
- Exposure of keratinocytes to non-thermal dielectric barrier discharge plasma increases the level of 8-oxoguanine via inhibition of its repair enzyme vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7454
- Nrf2–ARE Signaling Acts as Master Pathway for the Cellular Antioxidant Activity of Fisetin vol.24, pp.4, 2019, https://doi.org/10.3390/molecules24040708
- Ginsenoside Rh1 Exerts Neuroprotective Effects by Activating the PI3K/Akt Pathway in Amyloid-β Induced SH-SY5Y Cells vol.11, pp.12, 2021, https://doi.org/10.3390/app11125654