참고문헌
- E. A. Carlen and M. Loss, Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 22-D Navier-Stokes equation, Duke Math. J. 81 (1995), no. 1, 135-157. https://doi.org/10.1215/S0012-7094-95-08110-1
- A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations 19 (1994), no. 5-6, 827-872. https://doi.org/10.1080/03605309408821037
- M. Chae, K. Kang, and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Cont. Dyn. Syst. A 33 (2013), no. 6, 2271-2297. https://doi.org/10.3934/dcds.2013.33.2271
- M. Chae, Global existence and temporal decay in Keller-Segel models coupled to fiuid equations, Comm. Partial Diff. Equations 39 (2014), no. 7, 1205-1235. https://doi.org/10.1080/03605302.2013.852224
- A. Chertock, K. Fellner, A. Kurganov, A. Lorz, and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech. 694 (2012), 155-190. https://doi.org/10.1017/jfm.2011.534
- Y.-S. Chung, K. Kang, and J. Kim, Global existence of weak solutions for a Keller-Segel- fluid model with nonlinear diffusion, J. Korean Math. Soc. 51 (2014), no. 3, 635-654. https://doi.org/10.4134/JKMS.2014.51.3.635
- R. Duan, A. Lorz, and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations 35 (2010), no. 9, 1635-1673. https://doi.org/10.1080/03605302.2010.497199
- M. D. Francesco, A. Lorz, and P. Markowich, Chemotaxis-fluid coupled model for swim- ming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Cont. Dyn. Syst. A 28 (2010), no. 4, 1437-1453. https://doi.org/10.3934/dcds.2010.28.1437
- T. Gallay and C. E. Wayne, Global stability of vortex solutions of the two dimensional Navier-Stokes equation, Comm. Math. Phys. 255 (2005), no. 1, 97-129. https://doi.org/10.1007/s00220-004-1254-9
- M. Giga, Y. Giga, and J. Saal, Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhauser Boston, 2010.
- M. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation, Comm. Math. Phys. 117 (1988), no. 4, 549-568. https://doi.org/10.1007/BF01218384
- M. A. Herrero and J. L. L. Velazquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Ser. 24 (1997), no. 4, 633-683.
- D. Horstman, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103-165.
- D. Horstman, From 1970 until present: The Keller-Segel model in chemotaxis and its conse- quences II, Jahresber. Deutsch. Math.-Verein. 106 (2004), no. 2, 51-69.
- W. Jager and S. Luckhaus, On explosions of solutions to s system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), no. 2, 819-824. https://doi.org/10.1090/S0002-9947-1992-1046835-6
- E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewd as an instability, J. Theor. Biol. 26 (1970), no. 3, 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
- E. F. Keller, Model for chemotaxis, J. Theor. Biol. 30 (1971), no. 2, 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
- A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci. 20 (2010), no. 6, 987-1004. https://doi.org/10.1142/S0218202510004507
- T. Nagai, T. Senba, and K. Yoshida, Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial Ekvac. 40 (1997), no. 3, 411-433.
- Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis, Banach center publications, 74, 149-160, 2006.
- K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac. 44 (2001), no. 3, 441-469.
- C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311-338. https://doi.org/10.1007/BF02476407
- R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model, arXiv:1403.4975v1.
- Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Cont. Dyn. Syst. A 32 (2012), no. 5, 1901-1914. https://doi.org/10.3934/dcds.2012.32.1901
- I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS 102 (2005), no. 7, 2277-2282. https://doi.org/10.1073/pnas.0406724102
- M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations 248 (2012), no. 12, 2889-2995. https://doi.org/10.1016/j.jde.2010.02.008
- M. Winkler, Global large data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations 37 (2012), no. 2, 319-351. https://doi.org/10.1080/03605302.2011.591865
- M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 455-487. https://doi.org/10.1007/s00205-013-0678-9
피인용 문헌
- Existence of Weak Solutions in Wasserstein Space for a Chemotaxis Model Coupled to Fluid Equations vol.49, pp.4, 2017, https://doi.org/10.1137/16M1083232
- A regularity condition and temporal asymptotics for chemotaxis-fluid equations vol.31, pp.2, 2018, https://doi.org/10.1088/1361-6544/aa92ec