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LINEAR RANK PRESERVERS ON

INFINITE TRIANGULAR MATRICES

Roksana S lowik

Abstract. We consider T∞(F ) – the space of all infinite upper triangular
matrices over a field F . We give a description of all linear maps that

satisfy the property: if rank(x) = 1, then rank(φ(x)) = 1 for all x ∈
T∞(F ). Moreover, we characterize all injective linear maps on T∞(F )
such that if rank(x) = k, then rank(φ(x)) = k.

1. Introduction

Linear preserver problem is an intensively studied branch of the matrix the-
ory. One of its most popular issues is the problem of describing rank preservers.

Let S be a space of matrices over a field F . We say that φ : S → S preserves
rank k matrices if

rank(x) = k implies rank(φ(x)) = k for all x ∈ S.
We always assume that φ is linear, i.e.,

φ(αx+ βy) = αφ(x) + βφ(y) for all x, y ∈ S, α, β ∈ F.
The problem of characterizing such maps was considered in many papers. One
of the first solutions, for the case of all rank one preservers on Mn×m(F ) were
given in [13] and [14]. Generalization of that – the maps preserving rank less
or equal to one were described in [6], preservers of sets of ranks were studied
in [2, 12]. This issue was also generalized in various ways, e.g. there were
considered matrices over rings [18], or instead of matrix spaces there were
investigated some algebras on Banach spaces [16].

There were also studied some special cases, e.g. when φ is nonsingular (like in
[3, 10, 18]). In particular, it was proved that the nonsingular maps φ preserving
rank k (k ∈ N) are of one of the forms

(1) φ(X) = PXQ ,

φ(X) = PXTQ ,
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where P , Q are nonsingular matrices of a proper dimension and XT is the
matrix transposed to X.

We will focus on rank preservers of upper triangular matrices. Such linear
maps were investigated in [9, 15], additive linear preservers – in [5, 8], and
modular automorphisms – in [7]. In general, the authors have shown that if
φ : Tn(F ) → Tn(F ) is a linear rank-one preserver (where Tn(F ) denotes the
space of n × n upper triangular matrices over F ), then φ either sends Tn(F )
(the space of upper triangular matrices) to some rank one subspace, or is of
form (1) for some nonsingular upper triangular P , Q.

In this paper we will take into consideration T∞(F ) – the space of infinite
upper triangular matrices (in which rows and columns are indexed by natural
numbers) over a field F , i.e. the space consisting of the matrices of the form

x11 x12 x13 · · ·
0 x22 x23

0 0 x33

...
. . .

 .

Let k ∈ N, we denote by Rk(T∞(F )) the set of all linear rank-k preservers
on T∞(F ). We will prove:

Theorem 1.1. Assume that F is a field and that φ is a linear rank-one pre-
server. Then either

(1) the image of φ consists only of matrices of rank one and the zero matrix
or

(2) there exist matrices a, b such that φ(x) = axb for x ∈ T∞(F ).

Note that we do not claim that the matrices a, b which appear in the second
point of Theorem 1.1, are upper triangular or invertible. Some more informa-
tion about a and b will be given at the end of Section 2.

After proving the above theorem, we will point out some connections between
the linear maps preserving rank one and the linear maps preserving rank one
idempotents. Next we will move to linear rank-k preservers for arbitrary k ∈ N.
We will show that it holds:

Theorem 1.2. Let F be any field and let k ∈ N, k ≥ 2. Assume that φ :
T∞(F ) → T∞(F ) is an injection. Then φ is a linear rank-k preserver if and
only if φ is a linear rank-one preserver and φ(T∞(F )) is not rank one subspace
of T∞(F ).

2. Proofs of first results

Let us start with explaining the notation. By enm we mean an infinite
matrix, whose rows and columns are indexed by natural numbers, with 1 in
the position (n,m) and with 0 in every other position. We write e∞ for the
infinite identity matrix.
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If x is a matrix that has nonzero entries only in the positions (i, j), where
i ∈ I, j ∈ J , then we will write

x =
∑

i∈I,j∈J
xijeij .

By M1×∞(F ) we denote the infinite dimensional space FN, i.e., the space
consisting of vectors of form

(2) (x1, x2, x3, . . .) with xn ∈ F for n ∈ N .

The symbol Mfin
∞×1(F ) stands for the space over F which consists of vectors of

form

(3) (x1, x2, x3, . . .)
T , xn ∈ F, | {xn 6= 0} | <∞ ,

where xT denotes the vector transposed to x.

In M1×∞(F ), Mfin
∞×1(F ) we introduce the following subspaces: Uk∞(F ) –

that contains vectors of form (2) such that xi = 0 for i < k, V k∞(F ) – that
contains vectors of form (3) such that xi = 0 for i > k. Moreover, we put

U0
∞(F ) = M1×∞(F ), V 0

∞(F ) = Mfin
∞×1(F ).

By ek we denote the vector of form (3) with xk = 1 and xi = 0 for i 6= k,
and by fk – the vector eTk . Notice that we have enfm = enm.

If U is a subspace of T∞(F ) (or Tn(F )) such that for every x ∈ U we have
either rank(x) = 1 or x = 0, then we will call U a rank one subspace.

We also introduce T fin∞ (F ) – the subspace of all infinite matrices with finite
support (i.e., having only finite number of nonzero entries).

Moreover, for any field F , F ∗ stands for F \ {0}.
Before we prove our main result let us look at two examples.

Example 2.1. For n ∈ N, define φn→ by the formula

φn→(
∑
i≤j

xijeij) =
∑
i≤j

xijei,j+n.

In particular

φ1→




x11 x12 x13 x14 · · ·
0 x22 x23 x24

0 0 x33 x34

0 0 0 x44

. . .



 =


0 x11 x12 x13 · · ·
0 0 x22 x23

0 0 0 x33

0 0 0 0
. . .

 .

Clearly, φn→ preserves rank one.

Example 2.2. Again let n ∈ N and

φn↘(
∑
i≤j

xijeij) =
∑
i≤j

xijei+n,j+n.
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This time for n = 1:

φn↘




x11 x12 x13 x14 · · ·
0 x22 x23 x24

0 0 x33 x34

0 0 0 x44

. . .



 =


0 0 0 0 · · ·
0 x11 x12 x13

0 0 x22 x23

0 0 0 x33

. . .

 .

Examples 2.1 and 2.2 show that there exist maps preserving not only rank
one, but also every rank and which are not given by a formula φ(X) = PXQ,
where P , Q are nonsingular triangular matrices.

Let us now present three remarks.

Lemma 2.1. Let F be any field. A matrix x ∈ T∞(F ) has rank one if and

only if it is of form x = vu for some v ∈Mfin
∞×1(F ), u ∈M1×∞(F ).

Lemma 2.2. Let F be a field and let v1, v2 ∈ Mfin
∞×1(F ), u1, u2 ∈ M1×∞(F )

and x = v1u1+v2u2. If x has rank one, then either v1, v2 are linearly dependent
or u1, u2 are linearly dependent.

Lemma 2.3. Let F be a field and φ ∈ R1(T∞(F )). Assume that for all n <

m < m′ we have φ(enm) = v1u1, φ(enm′) = v2u2 for some v1, v2 ∈ Mfin
∞×1(F ),

u1, u1 ∈M1×∞(F ). Then either v1, v2 are linearly independent and u1, u2 are
not, or u1, u2 are linearly independent and v1, v2 are not.

Proof. From Lemma 2.2, it follows that either v1, v2 or u1, u2 are linearly
dependent. Assume that the both possibilities hold. Then for some α, β ∈ F
we would have αφ(enm) + βφ(enm′) = 0, i.e., rank(αφ(enm) + βφ(enm′)) = 0,
although rank(enm + enm′) = 1. Hence, the claim must hold. �

In the same way it can be proved:

Lemma 2.4. Let F be a field and φ ∈ R1(T∞(F )). Assume that φ(enm) =

v1u1, φ(en′m) = v2u2 for some n < n′ < m, v1, v2 ∈ Mfin
∞×1(F ), u1, u1 ∈

M1×∞(F ). Then either v1, v2 are linearly independent and u1, u2 are not, or
u1, u2 are linearly independent and v1, v2 are not.

The proof of Theorem 1.1 follows from theorems that we will now present.

Theorem 2.1. Let F be an arbitrary field and let φ : T fin∞ (F )→ T∞(F ) be a
map preserving rank one matrices. Then either

(1) there exist a map u : N × N → M1×∞(F ) and a vector v ∈ Mfin
∞×1(F )

such that
(a) for all n ≤ m we have vu(n,m) ∈ T∞(F ),
(b) for all n ∈ N the set {u(n,m) : m ≥ n} is linearly independent,
(c) for all m ∈ N the set {u(n,m) : n ≤ m} is linearly independent,

and for these v, u we have

φ(
∑
n≤m

xnmenm) =
∑
n≤m

xnmvu(n,m) ,
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or
(2) there exists a pair of maps v : N → Mfin

∞×1(F ), u : N → M1×∞(F )
satisfying conditions
(a) v(n)u(m) ∈ T∞(F ) for all n ≤ m,
(b) the set {v(n)}n∈N is linearly independent,
(c) the set {u(m)}m∈N is linearly independent

for which we have

φ(
∑
n≤m

xnmenm) =
∑
n≤m

xnmv(n)u(m) .

Proof. Let us begin with discussion on images of enm (n,m ∈ N). All these

matrices are of rank one, so for each of them there exist v(n,m) ∈ Mfin
∞×1(F ),

u(n,m) ∈M1×∞(F ) such that φ(enm) = v(n,m)u(n,m) ∈ T∞(F ) \ {0}.
Fix now n ∈ N and consider the set Rn = {enm : m ∈ N, m ≥ n}. For every

three pairwise distinct elements from Rn we have

rank(enm + enm′) = 1 and rank(enm + enm′′) = 1.

Hence rank(φ(enm) + φ(enm′)) = 1, rank(φ(enm) + φ(enm′′)) = 1 and con-
sequently either αnm′v(n,m′) = αnmv(n,m) for some αnm′ , αnm ∈ F ∗ (and
then by Lemmas 2.3 and 2.4 u(n,m), u(n,m′) are linearly independent) or
βnm′u(n,m′) = βnmu(n,m) for some βnm, βnm′ ∈ F ∗ (and then v(n,m),
v(n,m′) are linearly independent), and the same holds for the pair m, m′′.
Assume that v(n,m′) = v(n,m) and u(n,m′′) = u(n,m). This situation is

 

  

1 1 1 

Figure 1. Picture to the proof of Theorem 2.1.

symbolically depicted in Figure 1.
Then

φ(enm + enm′ + enm′′)

= v(n,m) [αu(n,m) + βu(n,m′)] + v(n,m′′) · γ · u(n,m)

= [α′v(n,m) + β′v(n,m′′)]u(n,m) + γ′v(n,m)u(n,m′) .
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From the fact that rank(enm+enm′ +enm′′) = 1, it follows that either u(n,m),
u(n,m′) are linearly dependent or v(n,m), v(n,m′′) are linearly dependent –
a contradiction.

Therefore either

αnmv(n,m) = αnm′v(n,m′) for all m,m′ ≥ n
or

βnmu(n,m) = βnm′u(n,m′) for all m,m′ ≥ n.
Suppose that we have βnmu(n,m) = βnm′u(n,m′) for all m,m′ ≥ n, and

write u(n,m) as βnmu(n). Let jmin stand for the smallest index j for which
we have (u(n))j 6= 0. Notice that since v(n,m)u(n) ∈ T∞(F ) for all m ≥
n, (v(n,m))i = 0 for all i > jmin. Then v(n,m) ∈ V jmin

∞ (F ) for all m ≥
n. However {v(n,m) : m ∈ N} is linearly independent, whereas any subset of

M jmin

∞×1(F ) containing more than jmin elements, is not – a contradiction. We
must have αnm′v(n,m′) = αnmv(n,m) for all n ∈ N, m,m′ ≥ n.

Now we fixm ∈ N and consider the set Cm := {enm : n ≤ m}. By arguments
analogous to the given for Rn, we have either

αn′mv(n′,m) = αnmv(n,m) for n, n′ ≤ m
or

βn′mu(n′,m) = βnmu(n,m) for all n, n′ ≤ m.
Suppose first that αn′mv(n′,m) = αnmv(n,m). Since we also have αnmv(n,

m) = αnm′v(n,m′), we get that αnmv(n,m) = αn′m′v(n′,m′) for all n ≤ m,
n′ ≤ m′. Denoting v(n,m) by α′nmv we can write that φ(enm) = α′nmvu(n,m)
= vu′(n,m), where {u′(n,m) : n ≤ m} is linearly independent set, as well as
{u′(n,m) : m ≥ n}.

Assume now that we have βn′mu(n′,m) = βnmu(n,m) and write u(n,m)
as β′nmu(m). In this case {v(n,m) : n ≤ m} = {v(n) : n ≤ m} is linearly
independent, and so is {v(n) : n ∈ N}. Moreover, we have

φ(enm) = α′nmβ
′
nmv(n)u(m) = γnmv(n)u(m).

Suppose that we have αnmv(n,m) = αn′mv(n′,m) and βnm′u(n,m′) =
βn′m′u(n′,m′). Since

rank(enm + en′m + enm′ + en′m′) = 1,

we also have

rank(φ(enm) + φ(en′m) + φ(enm′) + φ(en′m′)) = 1,

so

rank [v(n,m)(αu(n,m) + βu(n′,m) + γu(n,m′)) + δv(n,m′)u(n,m′)] = 1

for some α, β, γ, δ ∈ F . As v(n,m), v(n,m′) are linearly independent, this
means that u(n,m), u(n′,m), u(n,m′) are linearly independent – a contradic-
tion.
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Summing up, we have proved that for every n,m ∈ N, n ≤ m, φ(enm) =
vu′(n,m) in case (1) and φ(enm) = γnmv(n)u(m) in case (2).

Notice that from

rank(enm + enm′ + en′m + en′m′) = 1 for n < n′, n < m, n′ < m′ ,

it follows that

rank [(γnmv(n) + γn′mv(n′))u(m) + (γnm′v(n) + γn′m′v(n′))u(m′)](4)

= rank [v(n)(γnmu(m) + γnm′u(m′)) + v(n′)(γn′mu(m) + γn′m′u(m′))]

= 1

for some γnm, γnm′ , γn′m, γn′m′ ∈ F . From (4) we obtain

γnm′

γnm
=
γn′m′

γn′m
and

γn′m
γnm

=
γn′m′

γnm′
,

i.e., the coefficients γnm, γnm′ are equal for m,m′ 6= 1. Hence we can assume
that γnm depends only on m and write simply φ(enm) = v′(n)u(m).

Now notice that from the linearity of φ, it follows that for every x ∈ T fin∞ (F )
we have φ(x) =

∑
n≤m xnmv

′(n)u(m) or φ(x) =
∑
n≤m xnmvu

′(n,m). With
no loss of generality we can consider this first possibility. �

Theorem 2.2. Let F be an arbitrary field. If φ : T fin∞ (F )→ T∞(F ) preserves
rank one matrices and the image of φ is not a rank one subspace of T∞(F ),
then there exist matrices a, b such that φ(x) = axb for all x ∈ T fin∞ (F ).

Proof. If φ satisfies the given assumptions and φ(T fin∞ (F )) is not rank one
subspace, then φ must be of form described in point (2) of Theorem 2.1. Hence
we have φ(enm) = v(n)u(m) for n ≤ m. Let a, b be defined by the conditions

aen = v(n), fmb = u(m) for all n,m ∈ N .

Then φ(enm) = u(n)v(m) = (aen)(fmb) = aenmb, which yields φ(x) = axb for
all x ∈ T fin∞ (F ). �

Proof of Theorem 1.1. Consider φ ∈ R1(T∞(F )). Clearly for all x ∈ T fin∞ (F )
such that rank(x) = 1 we have rank(φ(x)) = 1. Hence, by Theorem 2.1 we have
two possibilities: either φ(T fin∞ (F )) is a rank one subspace, or there exist a, b
such that φ(x) = axb for all x ∈ T fin∞ (F ). With no loss of generality consider
the second case. (The proof of the first one is analogous.)

Consider then x ∈ T∞(F ) that is not in T fin∞ (F ). Assume that

φ(x) 6=
∑
n≤m

xnmv(n)u(m).

In this case, there exist indices n, m such that

(φ(x))nm 6= (
∑
i≤j

xijv(i)u(j))nm.
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Take the minimal m for which the latter inequality holds, and for this n choose
the minimal m. There exists only a finite number of pairs i, j such that
(v(i)u(j))nm 6= 0. Denote the maximal j for which it holds by k. Let x(k) be
an infinite upper triangular matrix such that

(5) (x(k))ij =

{
xij for i ≤ j ≤ k
0 otherwise,

and let y(k) = x − x(k). Since φ is linear and x(k) is of form (5), we have

(φ(y(k)))nm 6= 0. Define now x(k)+1 as
∑k+1
i=1 xi,k+1ei,k+1 and y(k)+1 as y(k) −

x(k+1). Then we have (φ(y(k+1))nm 6= 0.
Suppose that the first k+r columns of y(k)+r are zero and that (φ(y(k)+r))nm

6= 0. If we define now x(k)+r+1 as
∑k+r+1
i=1 xi,k+r+1ei,k+r+1 and y(k)+r+1 as

y(k)+r − x(k)+r+1, we obtain that y(k)+r+1 has the first k+ r+ 1 columns zero
and (φ(y(k)+r+1))nm 6= 0. Now from induction, it follows that (φ(0))nm 6= 0,
which clearly contradicts the linearity of φ. Hence, we must have

φ(
∑
n≤m

xnmenm) =
∑
n≤m

xnmv(n)u(m)

for all x ∈ T∞(F ). �

Let us now present some examples.
The classical example of a linear rank one preserver on Tn(F ) is φ such that

φ(
∑
i≤j

xijeij) =



∑n
i=1 xii

∑n−1
i=1 xi,i+1 · · · x1n

0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 .

There does not exist an analogon to this map on T∞(F ). However, we also give
an example of φ such that all matrices in φ(T∞(F )) have rank not exceeding
one.

Example 2.3. Define φ as follows:

φ(
∑
n≤m

xnmenm) =
∑
n≤m

xnme1,2n−1(2m−1) ,

i.e.,

φ



x11 x12 x13 x14 · · ·
0 x22 x23 x24

0 0 x33 x34

0 0 0 x44

. . .



 =


x11 x22 x12 x33 x13 x23 x14 x44 · · ·
0 · · · 0 · · · 0
0 · · · 0 · · · 0
...

...
...

 .

More precisely, the coefficients from the first row (in x) are in the odd columns,
the coefficients from the second row are in the columns 4n + 2 (n ∈ N), the
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coefficients from the third row are in columns 8n+ 4, and so on. Obviously φ
preserves rank one and φ(T∞(F )) is a rank one subspace of T∞(F ).

Example 2.4. Consider the following φ.

φ



x11 x12 x13 x14 · · ·
0 x22 x23 x24

0 0 x33 x34

0 0 0 x44

. . .


 =


0 x11 + x12 2x11 + x12 x13 x14 · · ·
0 x22 x22 x23 x24

0 0 0 x33 x34

0 0 0 0 x44

. . .

 .

We have v(n) = en for n ∈ N, u(1) = (0, 1, 2, 0, 0, . . .), u(2) = (0, 1, 1, 0, 0, . . .),
u(m) = fm+1 for m ≥ 3, so

a = e∞ , b =



0 1 2 0 0 0 · · ·
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
...

. . .


.

Moreover, we can see that for φ1→ (from Example 2.1) we have

a = e∞, b =


0 1 0 0 · · ·
0 0 1 0
0 0 0 1
0 0 0 0
...

. . .

 ,

and for φ1↘ (from Example 2.2)

a =


0 0 0 0 · · ·
1 0 0 0
0 1 0 0
0 0 1 0
...

. . .

 , b =


0 1 0 0 · · ·
0 0 1 0
0 0 0 1
0 0 0 0
...

. . .

 .

The latter example shows that we can have axb ∈ T∞(F ) for all upper trian-
gular x, although a /∈ T∞(F ). It can be also noticed that the above a and b
are both noninvertible – it can be easily checked that a does not have a right
inverse, and b does not have any left one.

Example 2.5. Assume that τ is an increasing map on N and define Splτ as
in [17], i.e.,

Splτ (
∑
i≤j

xijeij) =
∑
i≤j

xijeτ(i)τ(j) .
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Then Splτ preserves rank one as well. For instance, for τ(n) = 2n we have

a =



0 0 0 0 0 · · ·
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
...

. . .


, b =



0 1 0 0 0 0 · · ·
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
...

. . .


.

As we may be interested in the case when the matrices a and b are invertible,
we will introduce one more symbol. Namely, we will use T ∗∞(F ) for the set
(which forms a multiplicative group) of all invertible elements of T∞(F ).

From Theorem 2.2, it follows:

Corollary 2.1. Let F be a field. If φ ∈ R1(T∞(F )) is surjective, then there
exist a, b ∈ T ∗∞(F ) such that φ(x) = axb for all x ∈ T∞(F ).

Proof. If φ is surjective, then we can make use of Theorem 2.2.
Consider the matrices

φ(enn) = v(n)u(n), φ(en,n+1) = v(n)u(n+ 1), φ(en,n+2) = v(n)u(n+ 2), . . .

and

φ(en+1,n+1) = v(n+ 1)u(n+ 1), φ(en+1,n+2) = v(n+ 1)u(n+ 2),
φ(en+1,n+3) = v(n+ 1)u(n+ 3), . . . .

Since rank(φ(enp) + φ(en+1,p)) = 1 for all p ≥ n+ 1 we have

rank(φ(enn) + φ(en+1,n+1)) > 1

and φ is surjective, we conclude that

v(n) ∈ V n∞ \ V n−1
∞ (F ) for all n ∈ N .

By an analogous argument we get that

u(m) ∈ Um∞ \ Um−1
∞ (F ) for all m ∈ N .

Therefore, a and b defined as in the proof of Theorem 2.2 are upper triangular
matrices. Moreover, as φ is onto, they are invertible. This completes the
proof. �

As we have promised we present now some facts about the form of a and
b that appear in Theorem 1.1. It is natural to ask when a, b are such that
axb ∈ T∞(F ) for all x ∈ T∞(F ). We have already seen that a, b does not
have to be upper triangular. According to our proofs, we have φ(x) ∈ T∞(F )
if and only if aenmb ∈ T∞(F ) for all n ≤ m. This is also equivalent to the
fact that v(n)u(m) ∈ T∞(F ) for n ≤ m. Since for every n ≤ m there exist kn,
lm such that v(n) ∈ V kn∞ (F ), u(m) ∈ U lm∞ (F ). Clearly, it suffices to focus on
the maximal kn and the minimal lm, or, more precisely, on the case when the
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difference between these two numbers (i.e., lm − kn) is minimal. If the latter
difference is negative, then φ(enm) /∈ T∞(F ). Otherwise we have φ(enm) ∈
T∞(F ). Hence, we can formulate:

Corollary 2.2. Let a be an infinite matrix over a field F such that

(1) every column v(n) of a is in the set V kn∞ (F ) for some kn ∈ N,
(2) columns of a are linearly independent,

and let b be an infinite matrix over the same field such that

(1) every row u(m) of a is in the set U lm∞ (F ) for some lm ∈ N,
(2) rows of b are linearly independent.

For all n ≤ m consider the set differences lm − kn. If this set contains a
minimal element which is nonnegative, then the map φ defined on T∞(F ) by
the formula φ(x) = axb, is in R1(T∞(F )).

3. Idempotents

Now we will prove that there is a connection between maps preserving rank
one and maps preserving rank one idempotents. Our result is inspired by
Corollary 3 from [15].

One can verify the following.

Remark 3.1. If F is a field and x ∈ T∞(F ) is rank one idempotent, then x is
of the form

(6)

 0 y yz
0 1 z
0 0 0

 .

 

m 

n 

m m’ 

Figure 2. Picture to the proof of Lemma 3.1. Nonzero coef-
ficients of x are in the blocks.



84 ROKSANA S LOWIK

 

  

 

 

1 

 
1 

Figure 3. The right block denote x and φ(x), whereas the
left ones y and φ(y).

Lemma 3.1. Suppose that F is a field and x ∈ T∞(F ) is a matrix of rank two,
of form v1u1 + v2u2, where v1 ∈ V n∞(F ) \ V n−1

∞ (F ), u1 ∈ Um∞(F ) \ Um−1
∞ (F ),

v2 ∈ V m∞ (F ) \ V m−1
∞ (F ), u2 ∈ Um

′

∞ (F ) \ Um′−1
∞ (F ). Then there exists at most

one rank one matrix y ∈ T∞(F ) such that x+ y is rank one idempotent.

Proof. Let x be a matrix from the assumption. Since x is of the form as in
Figure 2, we must have ymm = 1, and y = v3u3, where u3 is such that u1,
u2, u3 are linearly dependent. Hence u3 is determined by u2 and u1. More
precisely, if

(v2u2)n+1,m′

xnm′
= α1,

(v2u2)n+2,m′

xnm′
= α2, . . . ,

(v2u2)mm′

xnm′
= αm−n

and αm−n = 1, then v3 =
∑m−n
i=1 αien+i and u3 = u1−

(v2u2)mn2

xnm′
u2. Otherwise,

the matrix y with the property from the theorem does not exist. �

Theorem 3.1. Assume that F is a field and that φ : T∞(F ) → T∞(F ) is
injective. If the map φ is linear and it preserves rank one idempotents, then φ
preserves rank one matrices.

Proof. Let x ∈ T∞(F ) be a matrix of rank one. If x = α·x′, where α ∈ F and x′

is a matrix such that (x′)2 = x′, then by the assumptions and the homogeneity
of φ, the claim holds. Otherwise, we have x = vu for some v ∈ V n∞(F ),
u ∈ Um∞(F ) for some n < m. Let us put

y = enn + (vn1u1m)−1
n−1∑
i=1

vi1u1mein.

Then y and x+y are rank one idempotents – it is depicted in Figure 3. Hence,
φ(y), φ(x + y) are rank one idempotents as well. Therefore, φ(x) can have
rank equal to 0, 1 or 2. Since φ is an injection and φ(0) = 0, we can not have
rank(φ(x)) = 0.



LINEAR RANK PRESERVERS ON T∞(F ) 85

Now we will observe that the case rank(φ(y)) = 2 is also impossible. Suppose
the opposite – that rank(φ(x)) = 2. Now we put

z = emm + (vn1u1m)−1
∞∑

i=m+1

vn1u1iemi.

Then z and x + z are rank one idempotents, so φ(z), φ(x + z) are rank one
idempotents as well (see Figure 4). However, by Lemma 3.1, there exists at
most one rank one idempotent t such t + φ(x) is rank one idempotent. This
implies φ(y) = φ(z), which contradicts the injectivity of φ. �

Obviously, the converse implication does not hold, which can be easily ob-
served in e.g. Examples 2.3 and 2.4.

Using the facts proved in the preceding section we can prove:

Theorem 3.2. Assume that F is a field and that φ : T∞(F ) → T∞(F ) is a
linear injective map preserving rank one idempotents. Then φ(x) = axb, where
a and b are infinite matrices satisfying the following condition: for every n ∈ N
there exist k ∈ N such that the n-th column of a – v(n) is in V k∞(F ), the n-th
row of b – u(n) is in Uk∞(F ), and (v(n))k(u(n))k = 1.

Proof. Again we refer to the arguments given in the proofs in the previous
section. By them, the fact that φ is injective, and that rank one idempotents
are of form (6), φ must be given by a formula φ(x) = axb for some a, b.
Moreover, φ(enn) must be a rank one idempotent for every n. Hence v(n)u(n)
is of form (6). Therefore, if v(n) ∈ V k∞(F ) and (v(n))k = α, then u(n) ∈ Uk∞(F )
and (u(n))k = α−1. �

 

  

 

 

1 

1 

Figure 4. The upper block denote x and φ(x), whereas the
lower ones z and φ(z).
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4. Rank k

In this section we will characterize all injective rank-k preservers on T∞(F ),
where k ≥ 2. We will show that these maps coincide with some rank one
preservers. Our result is very similar to those from [1, 3, 4, 11].

First we prove:

Lemma 4.1. Let F be a field and let φ : T∞(F ) → T∞(F ) be a linear rank-k
preserver for some k ∈ N. If x ∈ T∞(F ) has rank one, then rank(φ(x)) is
finite.

Proof. Clearly, it suffices to discuss the case when k ≥ 2. If x has rank one,
then we can write x as a difference y − z, where rank(y) = rank(z) = k. More
precisely, since rank(x) = 1, x =

∑n
i=1

∑∞
j=m xijeij . If xij 6= 0 for some j > m,

then we put

y = x+
∑n
i=1 ximeim + em+1,m+1 + em+2,m+2 + · · ·+ em+k−1,m+k−1 ,

z =
∑n
i=1 ximeim + em+1,m+1 + em+2,m+2 + · · ·+ em+k−1,m+k−1 ,

whereas if x =
∑n
i=1 ximeim, then we put

y = x+
∑n
i=1 xi,m+1ei,m+1 + em+2,m+2 + em+3,m+3 + · · ·+ em+k,m+k ,

z =
∑n
i=1 xi,m+1ei,m+1 + em+2,m+2 + em+3,m+3 + · · ·+ em+k,m+k .

Hence rank(φ(x)) = rank(φ(y)− φ(z)). From the fact that φ preserves rank k,
we get that φ(x) is a difference of two matrices of rank k, so its rank is at most
2k. �

Now we can give:

Proof of Theorem 1.2. Suppose that φ preserves rank k matrices. Let x ∈
T∞(F ) be an arbitrary matrix of rank one. There existsmx such that (φ(x))ij =
0 for j ≥ i > mx. By arguments given in the proofs in Section 2, we can focus
on the matrices from T fin∞ (F ), there exist only a finite number of ell such that
(φ(ell))ij 6= 0 for i, j ≤ mx. Then we can choose such l that

• (φ(ell))ij = 0 for i, j ≤ mx,
• rank(x+ ell) = 2.

Denote the minimal l with this property by i1. For this ei1i1 there exists m1

such that (φ(x+ ei1i1))ij = 0 for j > i > m1, and we can find i2 such that

• (φ(ei2i2))ij = 0 for i, j ≤ m1,
• rank(x+ ei1i1 + ei2i2) = 3.

Performing this way we can find ei1i1 , ei2i2 , . . ., eik−1ik−1
such that

rank(x+ ei1i1 + · · ·+ eik−1ik−1
) = k

and

rank(φ(x+ ei1i1 + · · ·+ eik−1ik−1
))

= rank(φ(x)) + rank(φ(ei1i1)) + · · ·+ rank(φ(eik−1ik−1
)) .
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Since φ preserves rank k, we have

rank(φ(x)) + rank(φ(ei1i1)) + · · ·+ rank(φ(eik−1ik−1
)) = k,

so as φ is injective, by Lemma 4.1, all ranks in the latter equation are positive
and therefore rank(φ(x)) = 1.

Assume now that φ preserves rank one matrices and φ(T∞(F )) contains
matrices of rank greater than one. Then φ is of form as described in point
(2) of Theorem 2.1. Let x ∈ T∞(F ) be any matrix of rank k. Then x can be

 

 

  
 

     

     

  

Figure 5. Picture to the proof of Theorem 1.2.

written as a sum of k matrices of rank one, i.e., x = x1 + x2 + · · · + xk with

xi = rici for some ri ∈Mfin
∞×1(F ), ci ∈M1×∞(F ), where c1, . . ., ck are linearly

independent. By Theorem 2.1

φ(x) = φ(x1) + · · ·+ φ(xk) = v1u1 + · · ·+ vkuk .

Obviously

rank(φ(x)) ≤ rank(φ(x1)) + rank(φ(xk)) = 1 + · · ·+ 1 = k .

Suppose that rank(φ(x)) < k. Then for some i, the vector ui would be a linear
combination of u1, . . ., ui−1, ui+1, . . ., uk. However u1, . . ., uk are linearly
independent – a contradiction. Concluding we must have rank(φ(x)) = k
whenever rank(x) = k. �
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