과제정보
연구 과제 주관 기관 : China NSF, China Postdoctoral Science Foundation, Shanxi Provincial Postdoctoral Science Foundation, Xi An University of Science and Technology
참고문헌
- J. R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), no. 1, 105-143. https://doi.org/10.1080/03605309108820753
- J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a nonlocal forcing, Math. Methods Appl. Sci. 20 (1997), no. 13, 1069-1087. https://doi.org/10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
- D. G. Aronson, M. G. Crandall, and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), no. 10, 1001-1022. https://doi.org/10.1016/0362-546X(82)90072-4
- D. E. Carlson, Linear Thermoelasticity, Encyclopedia, Vol. Via/2, Springer Berlin 1972.
- Y. P. Chen and C. H. Xie, Blow-up for a porous medium equation with a localized source, Appl. Math. Comput. 159 (2004), no. 1, 79-93. https://doi.org/10.1016/j.amc.2003.10.032
- W. A. Day, Extensions of property of heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. 40 (1982), 319-330. https://doi.org/10.1090/qam/678203
- W. A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Quart. Appl. Math. 40 (1983), no. 4, 468-475. https://doi.org/10.1090/qam/693879
- K. Deng and H. A. Levien, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85-126. https://doi.org/10.1006/jmaa.1999.6663
- W. B. Deng, Global existence and finite time blow up for a degenerate reaction-diffusion system, Nonlinear Anal. 60 (2005), no. 5, 977-991. https://doi.org/10.1016/j.na.2004.10.016
- W. B. Deng, Y. X. Li, and C. H. Xie, Blow-up and global existence for a nonlocal degenerate parabolic system, J. Math. Anal. Appl. 277 (2003), no. 1, 199-217. https://doi.org/10.1016/S0022-247X(02)00533-4
- J. I. Diaz and R. Kerser, On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, J. Differential Equations 69 (1987), no. 3, 368-403. https://doi.org/10.1016/0022-0396(87)90125-2
- E. Dibenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.
- Lili. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources, J. Math. Anal. Appl. 324 (2006), no. 1, 304-320. https://doi.org/10.1016/j.jmaa.2005.11.052
- Z. W. Duan, W. B. Deng, and C. H. Xie, Uniform blow-up profile for a degenerate parabolic system with nonlocal source, Comput. Math. Appl. 47 (2004), no. 6-7, 977- 995. https://doi.org/10.1016/S0898-1221(04)90081-8
- A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math. 44 (1986), no. 3, 401-407. https://doi.org/10.1090/qam/860893
- A. Friedman and B. Mcleod, Blow-up of positive solutions of similinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425-447. https://doi.org/10.1512/iumj.1985.34.34025
- H. A. Levien, The role of critical exponents in blow-up theorems, SIAM Rev 32 (1990), 262-288. https://doi.org/10.1137/1032046
- H. A. Levien and P. E. Sacks, Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations 52 (1984), 135-161. https://doi.org/10.1016/0022-0396(84)90174-8
- F. C. Li and C. H. Xie, Global existence and blow-up for a nonlinear porous medium equation, Appl. Math. Lett. 16 (2003), 185-192. https://doi.org/10.1016/S0893-9659(03)80030-7
- F. C. Li, Existence and blow-up for a degenerate parabolic equation with nonlocal source, Nonlinear Anal. 52 (2003), 523-534. https://doi.org/10.1016/S0362-546X(02)00119-0
- H. L. Li and M. X. Wang, Blow-up behaviors for semilinear parabolic systems coupled in equations and boundary conditions, J. Math. Anal. Appl. 304 (2005), no. 1, 96-114. https://doi.org/10.1016/j.jmaa.2004.09.020
- C. V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 88 (1998), no. 1, 225-238. https://doi.org/10.1016/S0377-0427(97)00215-X
- C. V. Pao, Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 136 (2001), no. 1-2, 227-243. https://doi.org/10.1016/S0377-0427(00)00614-2
- P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), no. 6, 1301-1334. https://doi.org/10.1137/S0036141097318900
- M. X. Wang, Blow-up rates for semilinear parabolic systems with nonlinear boundary conditions, Appl. Math. Lett. 16 (2003), no. 2, 169-175.
- L. Z. Zhao and S. N. Zheng, Critical exponent and asymptotic estimates of solutions to parabolic systems with localized nonlinear sources, J. Math. Anal. Appl. 292 (2004), no. 2, 621-635. https://doi.org/10.1016/j.jmaa.2003.12.011
- S. N. Zheng and L. H. Kong, Roles of weight functions in a nonlinear nonlocal parabolic system, Nonlinear Anal. 68 (2008), no. 8, 2406-2416. https://doi.org/10.1016/j.na.2007.01.067