κ³Όμ μ 보
μ°κ΅¬ κ³Όμ μ£Όκ΄ κΈ°κ΄ : NSFC
μ°Έκ³ λ¬Έν
- M. Auslander and M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc. vol. 94, 1969.
- L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math. vol. 1747, Springer, Berlin, 2000.
- E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
- E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, Covers and envelopes by V - Gorenstein modules, Comm. Algebra 33 (2005), no. 12, 4705-4717. https://doi.org/10.1080/00927870500328766
- H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267-284. https://doi.org/10.7146/math.scand.a-11434
- E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62-66.
- H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010
- H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
- Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169. https://doi.org/10.1016/j.jalgebra.2013.07.008
- S. Sather-Wagstaff, T. Sharif, and D. White, Stability of Gorenstein categories, J. Lon- don Math. Soc. 77 (2008), no. 2, 481-502. https://doi.org/10.1112/jlms/jdm124
- S. Sather-Wagstaff, AB-contexts and stability for Gorenstein flat modules with respect ro semidu- alizing modules, Algebr. Represent. Theory 14 (2011), no. 3, 403-428. https://doi.org/10.1007/s10468-009-9195-9
- W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Publishing Co., Amsterdam, 1974.
νΌμΈμ© λ¬Έν
- Hexavalent symmetric graphs of order 9 p vol.340, pp.10, 2017, https://doi.org/10.1016/j.disc.2017.05.011
- Heptavalent Symmetric Graphs of Order 16p vol.24, pp.03, 2017, https://doi.org/10.1142/S1005386717000293