DOI QRμ½”λ“œ

DOI QR Code

𝓦-RESOLUTIONS AND GORENSTEIN CATEGORIES WITH RESPECT TO A SEMIDUALIZING BIMODULES

  • YANG, XIAOYAN (DEPARTMENT OF MATHEMATICS NORTHWEST NORMAL UNIVERSITY)
  • 투고 : 2012.08.15
  • λ°œν–‰ : 2016.01.01

초둝

Let $\mathcal{W}$ be an additive full subcategory of the category R-Mod of left R-modules. We provide a method to construct a proper ${\mathcal{W}}^H_C$-resolution (resp. coproper ${\mathcal{W}}^T_C$-coresolution) of one term in a short exact sequence in R-Mod from those of the other two terms. By using these constructions, we introduce and study the stability of the Gorenstein categories ${\mathcal{G}}_C({\mathcal{W}}{\mathcal{W}}^T_C)$ and ${\mathcal{G}}_C({\mathcal{W}}^H_C{\mathcal{W}})$ with respect to a semidualizing bimodule C, and investigate the 2-out-of-3 property of these categories of a short exact sequence by using these constructions. Also we prove how they are related to the Gorenstein categories ${\mathcal{G}}((R{\ltimes}C){\otimes}_R{\mathcal{W}})_C$ and ${\mathcal{G}}(Hom_R(R{\ltimes}C,{\mathcal{W}}))_C$ over $R{\ltimes}C$.

ν‚€μ›Œλ“œ

κ³Όμ œμ •λ³΄

연ꡬ 과제 μ£Όκ΄€ κΈ°κ΄€ : NSFC

μ°Έκ³ λ¬Έν—Œ

  1. M. Auslander and M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc. vol. 94, 1969.
  2. L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math. vol. 1747, Springer, Berlin, 2000.
  3. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
  4. E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, Covers and envelopes by V - Gorenstein modules, Comm. Algebra 33 (2005), no. 12, 4705-4717. https://doi.org/10.1080/00927870500328766
  5. H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267-284. https://doi.org/10.7146/math.scand.a-11434
  6. E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62-66.
  7. H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010
  8. H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
  9. Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169. https://doi.org/10.1016/j.jalgebra.2013.07.008
  10. S. Sather-Wagstaff, T. Sharif, and D. White, Stability of Gorenstein categories, J. Lon- don Math. Soc. 77 (2008), no. 2, 481-502. https://doi.org/10.1112/jlms/jdm124
  11. S. Sather-Wagstaff, AB-contexts and stability for Gorenstein flat modules with respect ro semidu- alizing modules, Algebr. Represent. Theory 14 (2011), no. 3, 403-428. https://doi.org/10.1007/s10468-009-9195-9
  12. W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Publishing Co., Amsterdam, 1974.

ν”ΌμΈμš© λ¬Έν—Œ

  1. Hexavalent symmetric graphs of order 9 p vol.340, pp.10, 2017, https://doi.org/10.1016/j.disc.2017.05.011
  2. Heptavalent Symmetric Graphs of Order 16p vol.24, pp.03, 2017, https://doi.org/10.1142/S1005386717000293