DOI QR코드

DOI QR Code

Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants

  • Roh, Sang-Gun (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Suzuki, Yutaka (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Gotoh, Takafumi (Kuju Agriculture Research Center, Kyushu University) ;
  • Tatsumi, Ryuichi (Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University) ;
  • Katoh, Kazuo (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University)
  • 발행 : 2016.01.01

초록

Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.

키워드

참고문헌

  1. Aggarwal, B. B. 2003. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol 3: 745-756. https://doi.org/10.1038/nri1184
  2. Allen, R. E., S. M. Sheehan, R. G. Taylor, T. L. Kendall, and G. M. Rice. 1995. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol. 165:307-312. https://doi.org/10.1002/jcp.1041650211
  3. Auberger, P., L. Falquerho, J. O. Contreres, G. Pages, G. Le Cam, B. Rossi, and A. Le Cam. 1989. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell 58:631-640. https://doi.org/10.1016/0092-8674(89)90098-6
  4. Baggiolini, M. 2001. Chemokines in pathology and medicine. J. Int. Med. 250:91-104. https://doi.org/10.1046/j.1365-2796.2001.00867.x
  5. Baik, M., T. T. Vu, M. Y. Piao, and H. J. Kang. 2014. Association of DNA methylation levels with tissue-specific expression of adipogenic and lipogenic genes in longissimus dorsi muscle of Korean cattle. Asian Australas. J. Anim. Sci. 27:1493-1498. https://doi.org/10.5713/ajas.2014.14283
  6. Bartoccioni, E., D. Michaelis, and R. Hohlfeld. 1994. Constitutive and cytokine-induced production of interleukin-6 by human myoblasts. Immunol. Lett. 42:135-138. https://doi.org/10.1016/0165-2478(94)90076-0
  7. Belk, K. E., J. D. Tatum, and F. L. Williams, Jr. 1991. Deposition and distribution of carcass fat for steers differing in frame size and muscle thickness. J. Anim. Sci. 69:609-616. https://doi.org/10.2527/1991.692609x
  8. Bell, A. W. 1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73:2804-2819. https://doi.org/10.2527/1995.7392804x
  9. Berg, A. H., T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer. 2001. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7:947-953. https://doi.org/10.1038/90992
  10. Bishop, M. D., R. C. M. Simmen, F. A. Simmen, and M. E. Davis. 1989. The relationship of insulin-like growth factor-I with postweaning performance in Angus beef cattle. J. Anim. Sci. 67:2872-2880. https://doi.org/10.2527/jas1989.67112872x
  11. Bobe, G., J. W. Young, and D. C. Beitz. 2004. Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 87:3105-3124. https://doi.org/10.3168/jds.S0022-0302(04)73446-3
  12. Bostrom, P., J. Wu, M. P. Jedrychowski, A. Korde, L. Ye, J. C. Lo, K. A. Rasbach, E. A. Bostrom, J. H. Choi, and J. Z. Long et al. 2012. A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463-468. https://doi.org/10.1038/nature10777
  13. Bozaoglu, K., K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, and D. Segal. 2007. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687-4694. https://doi.org/10.1210/en.2007-0175
  14. Bozaoglu, K., D. Segal, K. A. Shields, N. Cummings, J. E. Curran, A. G. Comuzzie, M. C. Mahaney, D. L. Rainwater, J. L. VandeBerg, J. W. MacCluer, G. Collier, J. Blangero, K. Walder, and J. B. Jowett. 2009. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J. Clin. Endocrinol. Metab. 94:3085-3088. https://doi.org/10.1210/jc.2008-1833
  15. Brakenhielm, E., R. Cao, B. Gao, B. Angelin, B. Cannon, P. Parini, and Y. Cao. 2004. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ. Res. 94:1579-1588. https://doi.org/10.1161/01.RES.0000132745.76882.70
  16. Bruun, J. M., S. B. Pedersen, K. Kristensen, and B. Richelsen. 2002. Effects of pro-inflammatory cytokines and chemokines on leptin production in human adipose tissue in vitro. Mol. Cell. Endocrinol. 190:91-99. https://doi.org/10.1016/S0303-7207(02)00007-2
  17. Bruunsgaard, H. 1997. Exercise-induced increase in interleukin-6 is related to muscle damage. J. Physiol.(Lond) 499(Pt 3):833-841. https://doi.org/10.1113/jphysiol.1997.sp021972
  18. Bub, J. D., T. Miyazaki, and Y. Iwamoto. 2006. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem. Biophys. Res. Commun. 340:1158-1166. https://doi.org/10.1016/j.bbrc.2005.12.103
  19. Burk, R. F. and K. E. Hill. 2005. Selenoprotein P: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25:215-235. https://doi.org/10.1146/annurev.nutr.24.012003.132120
  20. Carlson, B. A., S. V. Novoselov, E. Kumaraswamy, B. J. Lee, M. R. Anver, V. N. Gladyshev, and D. L. Hatfield. 2004. Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J. Biol. Chem. 279:8011-8017. https://doi.org/10.1074/jbc.M310470200
  21. Cawthorn, W. P. and J. K. Sethi. 2008. TNF-alpha and adipocyte biology. FEBS Lett. 582:117-131. https://doi.org/10.1016/j.febslet.2007.11.051
  22. Charge, S. B. and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84:209-238. https://doi.org/10.1152/physrev.00019.2003
  23. Choi, S. H., S. K. Park, B. J. Johnson, K. Y. Chung, C. W. Choi, K. H. Kim, W. Y. Kim, and B. Smith. 2015. AMPKalpha, C/EBPbeta, CPT1beta, GPR43, PPARgamma, and SCD gene expression in single- and co-cultured bovine satellite cells and intramuscular preadipocytes treated with palmitic, stearic, oleic, and linoleic acid. Asian Australas. J. Anim. Sci. 28:411-419. https://doi.org/10.5713/ajas.14.0598
  24. Copray, S., R. Liem, N. Brouwer, P. Greenhaff, F. Habens, and P. Fernyhough. 2000. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells. Exp. Neurol. 161:597-608. https://doi.org/10.1006/exnr.1999.7306
  25. Cox, A. R., C. J. Lam, C. W. Bonnyman, J. Chavez, J. S. Rios, and J. A. Kushner. 2015. Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia 58:1523-1531. https://doi.org/10.1007/s00125-015-3590-z
  26. Daniel, J. A., T. H. Elsasser, C. D. Morrison, D. H. Keisler, B. K. Whitlock, B. Steele, D. Pugh, and J. L. Sartin. 2003. Leptin, tumor necrosis factor-alpha (TNF), and CD14 in ovine adipose tissue and changes in circulating TNF in lean and fat sheep. J. Anim. Sci. 81:2590-2599. https://doi.org/10.2527/2003.81102590x
  27. De Cesaris, P., D. Starace, A. Riccioli, F. Padula, A. Filippini, and E. Ziparo. 1998. Tumor necrosis factor-alpha induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J. Biol. Chem. 273:7566-7571. https://doi.org/10.1074/jbc.273.13.7566
  28. De Rossi, M., P. Bernasconi, F. Baggi, R. De Waal Malefyt, and R. Mantegazza. 2000. Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int. Immunol. 12:1329-1335. https://doi.org/10.1093/intimm/12.9.1329
  29. Delavaud, C., F. Bocquier, Y. Chilliard, D. H. Keisler, A. Gertler, and G. Kann. 2000. Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep. J Endocrinol. 165:519-526. https://doi.org/10.1677/joe.0.1650519
  30. Deng, Y., H. Wang, Y. Lu, S. Liu, Q. Zhang, J. Huang, R. Zhu, J. Yang, R. Zhang, D. Zhang, W. Shen, G. Ning, and Y. Yang. 2013. Identification of chemerin as a novel FXR target gene down-regulated in the progression of nonalcoholic steatohepatitis. Endocrinology 154:1794-1801. https://doi.org/10.1210/en.2012-2126
  31. Do, M.-K. Q., Y. Sato, N. Shimizu, T. Suzuki, J. Shono, W. Mizunoya, M. Nakamura, Y. Ikeuchi, J. E. Anderson, and R. Tatsumi. 2011. Growth factor regulation of neural chemorepellent Sema3A expression in satellite cell cultures. Am. J. Physiol. Cell Physiol. 301:C1270-C1279. https://doi.org/10.1152/ajpcell.00257.2011
  32. Docke, S., J. F. Lock, A. L. Birkenfeld, S. Hoppe, S. Lieske, A. Rieger, N. Raschzok, I. M. Sauer, S. Florian, and M. A. Osterhoff et al. 2013. Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease. Eur. J. Endocrinol. 169:547-557. https://doi.org/10.1530/EJE-13-0112
  33. Doroudgar, S. and C. C. Glembotski. 2011. The cardiokine story unfolds: Ischemic stress-induced protein secretion in the heart. Trends Mol. Med. 17:207-214. https://doi.org/10.1016/j.molmed.2010.12.003
  34. Drackley, J. K., T. R. Overton, and G. N. Douglas. 2001. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy Sci. 84:E100-E112. https://doi.org/10.3168/jds.S0022-0302(01)70204-4
  35. Ellingsgaard, H., I. Hauselmann, B. Schuler, A. M. Habib, L. L. Baggio, D. T. Meier, E. Eppler, K. Bouzakri, S. Wueest, and Y. D. Muller et al. 2011. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17:1481-1489. https://doi.org/10.1038/nm.2513
  36. Fawcett, R. L., A. S. Waechter, L. B. Williams, P. Zhang, R. Louie, R. Jones, M. Inman, J. Huse, and R. V. Considine. 2000. Tumor necrosis factor-alpha inhibits leptin production in subcutaneous and omental adipocytes from morbidly obese humans. J. Clin. Endocrinol. Metab. 85:530-535.
  37. Feuermann, Y., S. J. Mabjeesh, L. Niv-Spector, D. Levin, and A. Shamay. 2006. Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad. J Endocrinol 191:407-413. https://doi.org/10.1677/joe.1.06913
  38. Fruebis, J., T. S. Tsao, S. Javorschi, D. Ebbets-Reed, M. R. Erickson, F. T. Yen, B. E. Bihain, and H. F. Lodish. 2001. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA. 98:2005-2010. https://doi.org/10.1073/pnas.98.4.2005
  39. Gomez-Pinilla, F., Z. Ying, R. R. Roy, R. Molteni, and V. R. Edgerton. 2002. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J. Neurophysiol. 88:2187-2195. https://doi.org/10.1152/jn.00152.2002
  40. Geary, T. W., E. L. McFadin, M. D. MacNeil, E. E. Grings, R. E. Short, R. N. Funston, and D. H. Keisler. 2003. Leptin as a predictor of carcass composition in beef cattle. J. Anim. Sci. 81:1-8.
  41. Goff, J. P. and J. R. Stabel. 1990. Decreased plasma retinol, alphatocopherol, and zinc concentration during the periparturient period: effect of milk fever. J. Dairy Sci. 73:3195-3199. https://doi.org/10.3168/jds.S0022-0302(90)79010-8
  42. Goralski, K. B., T. C. McCarthy, E. A. Hanniman, B. A. Zabel, E. C. Butcher, S. D. Parlee, S. Muruganandan, and C. J. Sinal. 2007. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282:28175-28188. https://doi.org/10.1074/jbc.M700793200
  43. Gotoh, T. 2003. Histochemical properties of skeletal muscles in Japanese cattle and their meat production ability. Anim. Sci. J. 74:339-354. https://doi.org/10.1046/j.1344-3941.2003.00125.x
  44. Gotoh, T., H. Iwamoto, Y. Nakanishi, R. Umetsu, and Y. Ono. 1999. Histochemical properties of skeletal muscles in different body parts of young Japanese black steers. Anim. Sci. Technol. 70:497-509.
  45. Grabstein, K. H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M. A. Schoenborn, and M. Ahdieh et al. 1994. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965-968. https://doi.org/10.1126/science.8178155
  46. Gusarova, V., C. A. Alexa, E. Na, P. E. Stevis, Y. Xin, S. Bonner-Weir, J. C. Cohen, H. H. Hobbs, A. J. Murphy, G. D. Yancopoulos, and J. Gromada. 2014. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159:691-696. https://doi.org/10.1016/j.cell.2014.09.027
  47. Haugen, F., F. Norheim, H. Lian, A. J. Wensaas, S. Dueland, O. Berg, A. Funderud, B. S. Skålhegg, T. Raastad, and C. A. Drevon. 2010. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol.-Cell Physiol. 298:C807-C816. https://doi.org/10.1152/ajpcell.00094.2009
  48. Hilton, D. J., N. A. Nicola, and D. Metcalf. 1988. Purification of a murine leukemia inhibitory factor from Krebs ascites cells. Anal. Biochem. 173: 359-367. https://doi.org/10.1016/0003-2697(88)90200-X
  49. Hu, W. and P. Feng. 2011. Elevated serum chemerin concentrations are associated with renal dysfunction in type 2 diabetic patients. Diabetes Res. Clin. Pract. 91:159-163. https://doi.org/10.1016/j.diabres.2010.11.016
  50. Kadokawa, H., J. R. Briegel, M. A. Blackberry, D. Blache, G. B. Martin, and N. R. Adams. 2003. Relationships between plasma concentrations of leptin and other metabolic hormones in GH-transgenic sheep infused with glucose. Domest. Anim. Endocrinol. 24:219-229. https://doi.org/10.1016/S0739-7240(02)00237-0
  51. Kang, H. J., N. H. Trang, and M. Baik. 2015. Effects of dietary restriction on the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle of Korean cattle steers. Asian Australas. J. Anim. Sci. 28:1187-1193. https://doi.org/10.5713/ajas.15.0056
  52. Keller, C., Y. Hellsten, A. Steensberg, and B. K. Pedersen. 2006. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine 36:141-147. https://doi.org/10.1016/j.cyto.2006.10.014
  53. Kenison, D. C., T. H. Elsasser, and R. Fayer. 1991. Tumor necrosis factor as a potential mediator of acute metabolic and hormonal responses to endotoxemia in calves. Am. J. Vet. Res. 52:1320-1326.
  54. Kokkonen, T., J. Taponen, T. Anttila, L. Syrjala-Qvist, C. Delavaud, Y. Chilliard, M. Tuori, and A. T. Tesfa. 2005. Effect of body fatness and glucogenic supplement on lipid and protein mobilization and plasma leptin in dairy cows. J. Dairy Sci. 88:1127-1141. https://doi.org/10.3168/jds.S0022-0302(05)72779-X
  55. Komatsu, T., F. Itoh, S. Mikawa, and K. Hodate. 2003. Gene expression of resistin in adipose tissue and mammary gland of lactating and non-lactating cows. J. Endocrinol. 178:R1-R5. https://doi.org/10.1677/joe.0.178R001
  56. Komatsu, T., F. Itoh, R. Sakumoto, K. Hodate, Y. Obara, and S. Kushibiki. 2007. Changes in the gene expression of adiponectin and glucose transporter 12 (GLUT12) in lactating and nonlactating cows. Anim. Sci. J. 78:98-102. https://doi.org/10.1111/j.1740-0929.2006.00411.x
  57. Komolka, K., E. Albrecht, L. Schering, J. Brenmoehl, A. Hoeflich, and S. Maak. 2014. Locus characterization and gene expression of bovine FNDC5: Is the myokine irisin relevant in cattle? PLoS One 9:e88060. https://doi.org/10.1371/journal.pone.0088060
  58. Krautbauer, S., J. Wanninger, K. Eisinger, Y. Hader, M. Beck, A. Kopp, A. Schmid, T. S. Weiss, C. Dorn, and C. Buechler. 2013. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp. Mol. Pathol. 95:199-205. https://doi.org/10.1016/j.yexmp.2013.07.009
  59. Kushibiki, S., K. Hodate, H. Shingu, Y. Ueda, Y. Mori, T. Itoh, and Y. Yokomizo. 2001a. Effects of long-term administration of recombinant bovine tumor necrosis factor-alpha on glucose metabolism and growth hormone secretion in steers. Am. J. Vet. Res. 62:794-798. https://doi.org/10.2460/ajvr.2001.62.794
  60. Kushibiki, S., K. Hodate, H. Shingu, Y. Ueda, M. Shinoda, Y. Mori, T. Itoh, and Y. Yokomizo. 2001b. Insulin resistance induced in dairy steers by tumor necrosis factor alpha is partially reversed by 2,4-thiazolidinedione. Domest. Anim. Endocrinol. 21:25-37. https://doi.org/10.1016/S0739-7240(01)00102-3
  61. Kushibiki, S., K. Hodate, Y. Ueda, H. Shingu, Y. Mori, T. Itoh, and Y. Yokomizo. 2000. Administration of recombinant bovine tumor necrosis factor-alpha affects intermediary metabolism and insulin and growth hormone secretion in dairy heifers. J. Anim. Sci. 78:2164-2171. https://doi.org/10.2527/2000.7882164x
  62. Laliotis, G. P., I. Bizelis, and E. Rogdakis. 2010. Comparative Approach of the de novo Fatty Acid Synthesis (Lipogenesis) between Ruminant and Non Ruminant Mammalian Species: From Biochemical Level to the Main Regulatory Lipogenic Genes. Curr. Genomics 11:168-183. https://doi.org/10.2174/138920210791110960
  63. Lee, H. G., Y. J. Choi, S. R. Lee, H. Kuwayama, H. Hidari, and S. K. You. 2005a. Effects of dietary protein and growth hormone-releasing peptide (GHRP-2) on plasma IGF-1 and IGFBPs in Holstein steers. Domest. Anim. Endocrinol. 28:134-146. https://doi.org/10.1016/j.domaniend.2004.07.001
  64. Lee, H. G., H. Hidari, S. K. Kang, Z. S. Hong, C. X. Xu, S. H. Kim, K. S. Seo, D. H. Yoon, and Y. J. Choi. 2005b. The Relationships between plasma insulin-like growth factor (IGF)-1 and IGF-binding proteins (IGFBPs) to growth pattern, and characteristics of plasma IGFBPs in steers. Asian Australas. J. Anim. Sci. 18:1575-1581. https://doi.org/10.5713/ajas.2005.1575
  65. Lents, C. A., R. P. Wettemann, F. J. White, I. Rubio, N. H. Ciccioli, L. J. Spicer, D. H. Keisler, and M. E. Payton. 2005. Influence of nutrient intake and body fat on concentrations of insulin-like growth factor-I, insulin, thyroxine, and leptin in plasma of gestating beef cows. J. Anim. Sci. 83:586-596. https://doi.org/10.2527/2005.833586x
  66. Luo, X. H., L. J. Guo, L. Q. Yuan, H. Xie, H. D. Zhou, X. P. Wu, and E. Y. Liao. 2005. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309:99-109. https://doi.org/10.1016/j.yexcr.2005.05.021
  67. Martins, K. J., I. MacLean, G. K. Murdoch, W. T. Dixon, and C. T. Putman. 2011. Nitric oxide synthase inhibition delays low-frequency stimulation-induced satellite cell activation in rat fast-twitch muscle. Appl. Physiol. Nutr. Metab. 36:996-1000. https://doi.org/10.1139/h11-091
  68. Matsumoto, K., S. Hashimoto, Y. Gon, T. Nakayama, and T. Horie. 1998. Proinflammatory cytokine-induced and chemical mediator-induced IL-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase-dependent pathway. J. Allergy Clin. Immunol. 101:825-831. https://doi.org/10.1016/S0091-6749(98)70311-2
  69. Matthews, V., M.-B. Astrom, M. H. S. Chan, C. R. Bruce, K. S. Krabbe, O. Prelovsek, T. Akerström, C. Yfanti, C. Broholm, and O. Mortensen et al. 2009. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409-1418. https://doi.org/10.1007/s00125-009-1364-1
  70. McCann, J. P., S. C. Loo, D. L. Aalseth, and T. Abribat. 1997. Differential effects of GH stimulation on fasting and prandial metabolism and plasma IGFs and IGF-binding proteins in lean and obese sheep. J. Endocrinol. 154:329-346. https://doi.org/10.1677/joe.0.1540329
  71. Memon, R. A., K. R. Feingold, A. H. Moser, J. Fuller, and C. Grunfeld. 1998. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am. J. Physiol. - Endocrinol. Metab. 274:E210-E217. https://doi.org/10.1152/ajpendo.1998.274.2.E210
  72. Misu, H., T. Takamura, H. Takayama, H. Hayashi, N. Matsuzawa-Nagata, S. Kurita, K. Ishikura, H. Ando, Y. Takeshita, and T. Ota et al. 2010. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 12:483-495. https://doi.org/10.1016/j.cmet.2010.09.015
  73. Miura, P., A. Amirouche, C. Clow, G. Bélanger, and B. J. Jasmin. 2012. Brain‐derived neurotrophic factor expression is repressed during myogenic differentiation by miR‐206. J. Neurochem. 120:230-238. https://doi.org/10.1111/j.1471-4159.2011.07583.x
  74. Morrison, C. D., J. A. Daniel, B. J. Holmberg, J. Djiane, N. Raver, A. Gertler, and D. H. Keisler. 2001. Central infusion of leptin into well-fed and undernourished ewe lambs: effects on feed intake and serum concentrations of growth hormone and luteinizing hormone. J. Endocrinol. 168:317-324. https://doi.org/10.1677/joe.0.1680317
  75. Mousavi, K. and B. J. Jasmin. 2006. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J. Neurosci. 26:5739-5749. https://doi.org/10.1523/JNEUROSCI.5398-05.2006
  76. Murata, Y., M. Konishi, and N. Itoh. 2011. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology. J. Nutr. Metab. Article ID 981315.
  77. Nicola, N. 1994. Guidebook to Cytokines and Their Receptors. Oxford Univ. Press, Oxford, UK.
  78. Nieman, D. C., J. M. Davis, D. A. Henson, J. Walberg-Rankin, M. Shute, C. L. Dumke, A. C. Utter, D. M. Vinci, J. A. Carson, and A. Brown. 2003. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J. Appl. Physiol. 94:1917-1925. https://doi.org/10.1152/japplphysiol.01130.2002
  79. Ohtani, Y., T. Takahashi, K. Sato, A. Ardiyanti, S. H. Song, R. Sato, K. Onda, Y. Wada, Y. Obara, K. Suzuki, A. Hagino, S. G. Roh, and K. Katoh. 2012. Changes in circulating adiponectin and metabolic hormone concentrations during periparturient and lactation periods in Holstein dairy cows. Anim. Sci. J. 83:788-795. https://doi.org/10.1111/j.1740-0929.2012.01029.x
  80. Ohtani, Y., T. Yonezawa, S. H. Song, T. Takahashi, A. Ardiyanti, K. Sato, A. Hagino, S. G. Roh, and K. Katoh. 2011. Gene expression and hormonal regulation of adiponectin and its receptors in bovine mammary gland and mammary epithelial cells. Anim. Sci. J. 82:99-106. https://doi.org/10.1111/j.1740-0929.2010.00805.x
  81. Oike, Y., M. Akao, K. Yasunaga, T. Yamauchi, T. Morisada, Y. Ito, T. Urano, Y. Kimura, Y. Kubota, and H. Maekawa, et al. 2005. Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nat. Med. 11:400-408. https://doi.org/10.1038/nm1214
  82. Pedersen, B. K. 2009. The diseasome of physical inactivity-and the role of myokines in muscle-fat cross talk. J. Physiol. 587: 5559-5568. https://doi.org/10.1113/jphysiol.2009.179515
  83. Pedersen, B. K. 2011. Exercise-induced myokines and their role in chronic diseases. Brain Behav. Immun. 25:811-816. https://doi.org/10.1016/j.bbi.2011.02.010
  84. Pedersen, B. K. 2013. Muscle as a secretory organ. Compr. Physiol. 3:1337-1362.
  85. Pedersen, B. K., T. C. Akerstrom, A. R. Nielsen, and C. P. Fischer. 2007. Role of myokines in exercise and metabolism. J. Appl. Physiol. 103:1093-1098. https://doi.org/10.1152/japplphysiol.00080.2007
  86. Pedersen, B. K., M. Pedersen, K. S. Krabbe, H. Bruunsgaard, V. B. Matthews, and M. A. Febbraio. 2009. Role of exercise‐induced brain‐derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 94:1153-1160. https://doi.org/10.1113/expphysiol.2009.048561
  87. Pethick, D. W. and D. B. Lindsay. 1982. Metabolism of ketone bodies in pregnant sheep. Br. J. Nutr. 48:549-563. https://doi.org/10.1079/BJN19820140
  88. Roberts, C. A., S. N. McCutcheon, H. T. Blair, P. D. Gluckman, and B. H. Breier. 1990. Developmental patterns of plasma insulinlike growth factor-1 concentrations in sheep. Domest. Anim. Endocrinol. 7:457-463. https://doi.org/10.1016/0739-7240(90)90003-I
  89. Roberts, L. D., P. Bostrom, J. F. O'Sullivan, R. T. Schinzel, G. D. Lewis, A. Dejam, Y.-K. Lee, M. J. Palma, S. Calhoun, and A. Georgiadi. 2014. ${\beta}$-Aminoisobutyric acid induces browning of white fat and hepatic ${\beta}$-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19:96-108. https://doi.org/10.1016/j.cmet.2013.12.003
  90. Roh, S., I. J. Clarke, R. W. Xu, J. W. Goding, K. Loneragan, and C. Chen. 1998. The in vitro effect of leptin on basal and growth hormone-releasing hormone-stimulated growth hormone secretion from the ovine pituitary gland. Neuroendocrinology 68:361-364. https://doi.org/10.1159/000054385
  91. Roh, S. G., D. Hishikawa, Y. H. Hong, and S. Sasaki. 2006. Control of adipogenesis in ruminants. Anim. Sci. J. 77:472-477. https://doi.org/10.1111/j.1740-0929.2006.00374.x
  92. Roh, S. G., G. Y. Nie, K. Loneragan, A. Gertler, and C. Chen. 2001. Direct modification of somatotrope function by long-term leptin treatment of primary cultured ovine pituitary cells. Endocrinology 142:5167-5171. https://doi.org/10.1210/endo.142.12.8559
  93. Roh, S. G., S. H. Song, K. C. Choi, K. Katoh, V. Wittamer, M. Parmentier, and S. Sasaki. 2007. Chemerin-A new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362:1013-1018. https://doi.org/10.1016/j.bbrc.2007.08.104
  94. Ronge, H. and J. Blum. 1989. Insulin-like growth factor I during growth in bulls. Reprod. Nutr. Dev. 29:105-111. https://doi.org/10.1051/rnd:19890109
  95. Ruan, H., P. D. Miles, C. M. Ladd, K. Ross, T. R. Golub, J. M. Olefsky, and H. F. Lodish. 2002. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes 51:3176-3188. https://doi.org/10.2337/diabetes.51.11.3176
  96. Ruan, H., M. J. Zarnowski, S. W. Cushman, and H. F. Lodish. 2003. Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and downregulates adipocyte genes. J. Biol. Chem. 278:47585-47593. https://doi.org/10.1074/jbc.M305257200
  97. Saito, Y., T. Hayashi, A. Tanaka, Y. Watanabe, M. Suzuki, E. Saito, and K. Takahashi. 1999. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J. Biol. Chem. 274:2866-2871. https://doi.org/10.1074/jbc.274.5.2866
  98. Sakaguchi, S., J. Shono, T. Suzuki, S. Sawano, J. E. Anderson, M. K. Do, H. Ohtsubo, W. Mizunoya, Y. Sato, M. Nakamura, M. Furuse, K. Yamada, Y. Ikeuchi, and R. Tatsumi. 2014. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle. Int. J. Biochem. Cell Biol. 54:272-285. https://doi.org/10.1016/j.biocel.2014.05.032
  99. Samitz, G., M. Egger, and M. Zwahlen. 2011. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int. J. Epidemiol. 40:1382-1400. https://doi.org/10.1093/ije/dyr112
  100. Sato, Y., M. K. Do, T. Suzuki, H. Ohtsubo, W. Mizunoya, M. Nakamura, M. Furuse, Y. Ikeuchi, and R. Tatsumi. 2013. Satellite cells produce neural chemorepellent semaphorin 3A upon muscle injury. Anim. Sci. J. 84:185-189. https://doi.org/10.1111/asj.12014
  101. Sawano, S., T. Suzuki, M. K. Do, H. Ohtsubo, W. Mizunoya, Y. Ikeuchi, and R. Tatsumi. 2014. Supplementary immunocytochemistry of hepatocyte growth factor production in activated macrophages early in muscle regeneration. Anim. Sci. J. 85:994-1000. https://doi.org/10.1111/asj.12264
  102. Scherer, P. E., S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270:26746-26749. https://doi.org/10.1074/jbc.270.45.26746
  103. Schoenberg, K. M., S. L. Giesy, K. J. Harvatine, M. R. Waldron, C. Cheng, A. Kharitonenkov, and Y. R. Boisclair. 2011. Plasma FGF21 is elevated by the intense lipid mobilization of lactation. Endocrinology 152:4652-4661. https://doi.org/10.1210/en.2011-1425
  104. Seidl, K., C. Erck, and A. Buchberger. 1998. Evidence for the participation of nerve growth factor and its low-affinity receptor (p75NTR) in the regulation of the myogenic program. J. Cell Physiol. 176:10-21. https://doi.org/10.1002/(SICI)1097-4652(199807)176:1<10::AID-JCP2>3.0.CO;2-B
  105. Serrano, A. L., B. Baeza-Raja, E. Perdiguero, M. Jardi, and P. Munoz-Canoves. 2008. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7:33-44. https://doi.org/10.1016/j.cmet.2007.11.011
  106. Shono, J. I., S. Sakaguchi, T. Suzuki, M. K. Q. Do, W. Mizunoya, M. Nakamura, Y. Sato, M. Furuse, K. Yamada, Y. Ikeuchi, and R. Tatsumi. 2013. Preliminary time‐course study of antiinflammatory macrophage infiltration in crush‐injured skeletal muscle. Anim. Sci. J. 84:744-750. https://doi.org/10.1111/asj.12105
  107. Soliman, M., K. Kimura, M. Ahmed, D. Yamaji, Y. Matsushita, Y. Okamatsu-Ogura, K. Makondo, and M. Saito. 2007. Inverse regulation of leptin mRNA expression by short- and long-chain fatty acids in cultured bovine adipocytes. Domest. Anim. Endocrinol. 33:400-409. https://doi.org/10.1016/j.domaniend.2006.08.005
  108. Song, S. H., K. Fukui, K. Nakajima, T. Kozakai, S. Sasaki, S. G. Roh, and K. Katoh. 2010. Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endocrinol. 39:97-105. https://doi.org/10.1016/j.domaniend.2010.02.007
  109. Srinivas, P. R., A. S. Wagner, L. V. Reddy, D. D. Deutsch, M. A. Leon, A. S. Goustin, and G. Grunberger. 1993. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol. Endocrinol. 7:1445-1455.
  110. Stanko, R. L., W. S. Cohick, D. W. Shaw, R. W. Harvey, D. R. Clemmons, M. D. Whitacre, and J. D. Armstrong. 1994. Effect of somatotropin and/or equine chorionic gonadotropin on serum and follicular insulin-like growth factor I and insulin-like growth factor binding proteins in cattle. Biol. Reprod. 50: 290-300. https://doi.org/10.1095/biolreprod50.2.290
  111. Starace, D., R. Galli, A. Paone, P. De Cesaris, A. Filippini, E. Ziparo, and A. Riccioli. 2008. Toll-like receptor 3 activation induces antiviral immune responses in mouse sertoli cells. Biol. Reprod. 79:766-775. https://doi.org/10.1095/biolreprod.108.068619
  112. Stefan, N. and H. U. Haring. 2013. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9:144-152. https://doi.org/10.1038/nrendo.2012.258
  113. Suzuki, T., M. K. Do, Y. Sato, K. Ojima, M. Hara, W. Mizunoya, M. Nakamura, M. Furuse, Y. Ikeuchi, J. E. Anderson, and R. Tatsumi. 2013. Comparative analysis of semaphorin 3A in soleus and EDL muscle satellite cells in vitro toward understanding its role in modulating myogenin expression. Int. J. Biochem. Cell Biol. 45:476-482. https://doi.org/10.1016/j.biocel.2012.10.003
  114. Suzuki, Y., Y. H. Hong, S. H. Song, A. Ardiyanti, D. Kato, K. H. So, K. Katoh, and S. G. Roh. 2012a. The regulation of chemerin and CMKLR1 genes expression by TNF-${\alpha}$, adiponectin, and chemerin analog in bovine differentiated adipocytes. Asian Australas. J. Anim. Sci. 25:1316-1321. https://doi.org/10.5713/ajas.2012.12083
  115. Suzuki, Y., S. H. Song, K. Sato, K. H. So, A. Ardiyanti, S. Kitayama, Y. H. Hong, S. D. Lee, K. C. Choi, A. Hagino, K. Katoh, and S. G. Roh. 2012b. Chemerin analog regulates energy metabolism in sheep. Anim. Sci. J. 83:263-267. https://doi.org/10.1111/j.1740-0929.2011.01002.x
  116. Suzuki, Y., D. Kato, M. Kondo, H. Hatanaka, S. Haga, K. T. Gotoh, and S.G. Roh. 2015. Expressional regulation of chemerin and its receptors in the liver and adipose tissues of young cattle by weaning and nutrition. 2015 ADSA-ASAS Joint Annual Meeting. Orlando, FL, USA.
  117. Suzuki, Y., S. Kitayama, M. Kondo, S. Haga, K. Katoh, and S. G. Roh. 2014. Chemerin mRNA Expression is regulated by insulin and fatty Acids in the liver of calves. Animal Production in Australia. Proceedings of the 30th Biennial Conference of the Australian. Canberra, Australia. 30:272.
  118. Tatsumi, R. 2010. Mechano‐biology of skeletal muscle hypertrophy and regeneration: Possible mechanism of stretch‐induced activation of resident myogenic stem cells. Anim. Sci. J. 81:11-20. https://doi.org/10.1111/j.1740-0929.2009.00712.x
  119. Tatsumi, R. and R. E. Allen. 2004. Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve 30:654-658. https://doi.org/10.1002/mus.20114
  120. Tatsumi, R., and R. E. Allen. 2008. Mechano‐biology of resident myogenic stem cells: Molecular mechanism of stretch‐induced activation of satellite cells. Anim. Sci. J. 79:279-290. https://doi.org/10.1111/j.1740-0929.2008.00528.x
  121. Tatsumi, R., J. E. Anderson, C. J. Nevoret, O. Halevy, and R. E. Allen. 1998. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev. Biol. 194:114-128. https://doi.org/10.1006/dbio.1997.8803
  122. Tatsumi, R., A. Hattori, Y. Ikeuchi, J. E. Anderson, and R. E. Allen. 2002. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol. Biol. Cell 13:2909-2918. https://doi.org/10.1091/mbc.E02-01-0062
  123. Tatsumi, R., X. Liu, A. Pulido, M. Morales, T. Sakata, S. Dial, A. Hattori, Y. Ikeuchi, and R. E. Allen. 2006. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am. J. Physiol. Cell Physiol. 290:C1487-C1494. https://doi.org/10.1152/ajpcell.00513.2005
  124. Tatsumi, R., Y. Sankoda, J. E. Anderson, Y. Sato, W. Mizunoya, N. Shimizu, T. Suzuki, M. Yamada, R. P. Rhoads, Jr., Y. Ikeuchi, and R. E. Allen. 2009. Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am. J. Physiol. Cell Physiol. 297:C238-C252. https://doi.org/10.1152/ajpcell.00161.2009
  125. Tatsumi, R., S. M. Sheehan, H. Iwasaki, A. Hattori, and R. E. Allen. 2001. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp. Cell Res. 267:107-114. https://doi.org/10.1006/excr.2001.5252
  126. Vega, R. A., H. G. Lee, H. Kuwayama, N. Matsunaga, and H. Hidari. 2002. Age-related changes in plasma leptin from early growing to late finishing stages of castrated Holstein steers: utilizing multi-species leptin RIA. Asian Australas. J. Anim. Sci. 15:725-731. https://doi.org/10.5713/ajas.2002.725
  127. Vernon, R. G. 2005. Lipid metabolism during lactation: a review of adipose tissue-liver interactions and the development of fatty liver. J. Dairy Res. 72:460-469. https://doi.org/10.1017/S0022029905001299
  128. Vernon, R. G., R. G. Denis, and A. Sorensen. 2001. Signals of adiposity. Domest. Anim. Endocrinol. 21:197-214. https://doi.org/10.1016/S0739-7240(01)00121-7
  129. Vicini, J. L., F. C. Buonomo, J. J. Veenhuizen, M. A. Miller, D. R. Clemmons, and R. J. Collier. 1991. Nutrient balance and stage of lactation affect responses of insulin, insulin-like growth factors I and II, and insulin-like growth factor-binding protein 2 to somatotropin administration in dairy cows. J. Nutr. 121:1656-1664. https://doi.org/10.1093/jn/121.10.1656
  130. Wang, Y., F. Quagliarini, V. Gusarova, J. Gromada, D. M. Valenzuela, J. C. Cohen, and H. H. Hobbs. 2013. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc. Natl. Acad. Sci. USA 110:16109-16114. https://doi.org/10.1073/pnas.1315292110
  131. Wegner, J., P. Huff, C. P. Xie, F. Schneider, F. Teuscher, P. S. Mir, Z. Mir, E. C. Kazala, R. J. Weselake, and K. Ender. 2001. Relationship of plasma leptin concentration to intramuscular fat content in beef from crossbred Wagyu cattle. Can. J. Anim. Sci. 81:451-457. https://doi.org/10.4141/A00-111
  132. Wittamer, V., B. Bondue, A. Guillabert, G. Vassart, M. Parmentier, and D. Communi. 2005. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175:487-493. https://doi.org/10.4049/jimmunol.175.1.487
  133. Wittamer, V., J. D. Franssen, M. Vulcano, J. F. Mirjolet, E. Le Poul, I. Migeotte, S. Brezillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani, S. Sozzani, G. Vassart, M. Parmentier, and D. Communi. 2003. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198:977-985. https://doi.org/10.1084/jem.20030382
  134. Wittamer, V., F. Gregoire, P. Robberecht, G. Vassart, D. Communi, and M. Parmentier. 2004. The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J. Biol. Chem. 279:9956-9962. https://doi.org/10.1074/jbc.M313016200
  135. Wozniak, A. C. and J. E. Anderson. 2007. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev. Dyn. 236:240-250. https://doi.org/10.1002/dvdy.21012
  136. Wozniak, A. C., J. Kong, E. Bock, O. Pilipowicz, and J. E. Anderson. 2005. Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve 31:283-300. https://doi.org/10.1002/mus.20263
  137. Xu, A., M. C. Lam, K. W. Chan, Y. Wang, J. Zhang, R. L. Hoo, J. Y. Xu, B. Chen, W. S. Chow, A. W. Tso, and K. S. Lam. 2005. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc. Natl. Acad. Sci. USA 102: 6086-6091. https://doi.org/10.1073/pnas.0408452102
  138. Yamada, M., Y. Sankoda, R. Tatsumi, W. Mizunoya, Y. Ikeuchi, K. Sunagawa, and R. E. Allen. 2008. Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int. J. Biochem. Cell Biol. 40:2183-2191. https://doi.org/10.1016/j.biocel.2008.02.017
  139. Yamada, M., R. Tatsumi, T. Kikuiri, S. Okamoto, S. Nonoshita, W. Mizunoya, Y. Ikeuchi, H. Shimokawa, K. Sunagawa, and R. E. Allen. 2006. Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle Nerve 34:313-319. https://doi.org/10.1002/mus.20601
  140. Yamada, M., R. Tatsumi, K. Yamanouchi, T. Hosoyama, S. Shiratsuchi, A. Sato, W. Mizunoya, Y. Ikeuchi, M. Furuse, and R. E. Allen. 2010. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: A possible mechanism for reestablishing satellite cell quiescence in vivo. Am. J. Physiol. Cell Physiol. 298:C465-C476. https://doi.org/10.1152/ajpcell.00449.2009
  141. Yamauchi, E., Y. Suzuki, K.-H. So, K.-I. Suzuki, K. Katoh, and S.- G. Roh. 2015. Single Nucleotide polymorphism in the coding region of bovine chemerin gene and their associations with carcass traits in Japanese black cattle. Asian Australas. J. Anim. Sci. 28:1084-1089. https://doi.org/10.5713/ajas.14.0560
  142. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M. L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, and T. Kadowaki. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7:941-946. https://doi.org/10.1038/90984
  143. Yi, P., J. S. Park, and D. A. Melton. 2013. Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell 153:747-758. https://doi.org/10.1016/j.cell.2013.04.008
  144. Yonekura, S., S. Hirota, Y. Tokutake, M. T. Rose, K. Katoh, and H. Aso. 2014. Dexamethasone and acetate modulate cytoplasmic leptin in bovine preadipocytes. Asian Australas. J. Anim. Sci. 27:567-573. https://doi.org/10.5713/ajas.2013.13559
  145. Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432. https://doi.org/10.1038/372425a0
  146. Zieba, D. A., M. Amstalden, S. Morton, J. L. Gallino, J. F. Edwards, P. G. Harms, and G. L. Williams. 2003. Effects of leptin on basal and GHRH-stimulated GH secretion from the bovine adenohypophysis are dependent upon nutritional status. J. Endocrinol. 178:83-89. https://doi.org/10.1677/joe.0.1780083

피인용 문헌

  1. Anti-obese effect of iodine-enriched yolk in cultured adipocytes vol.87, pp.4, 2016, https://doi.org/10.2508/chikusan.87.345
  2. Limits on hogget lambing: the fertility of the young ewe vol.60, pp.1, 2017, https://doi.org/10.1080/00288233.2016.1253592
  3. High non-esterified fatty acid concentrations promote expression and secretion of fibroblast growth factor 21 in calf hepatocytes cultured in vitro pp.09312439, 2017, https://doi.org/10.1111/jpn.12699