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Spectrum sensing is an elementary function in cognitive 
radio designed to monitor the existence of a primary user 
(PU). To achieve a high rate of detection, most techniques 
rely on knowledge of prior spectrum patterns, with a 
trade-off between high computational complexity and 
long sensing time. On the other hand, blind techniques 
ignore pattern matching processes to reduce processing 
time, but their accuracy degrades greatly at low signal-to-
noise ratios. To achieve both a high rate of detection and 
short sensing time, we propose fast spectrum sensing with 
coordinate system (FSC) — a novel technique that 
decomposes a spectrum with high complexity into a new 
coordinate system of salient features and that uses these 
features in its PU detection process. Not only is the space 
of a buffer that is used to store information about a PU 
reduced, but also the sensing process is fast. The 
performance of FSC is evaluated according to its accuracy 
and sensing time against six other well-known 
conventional techniques through a wireless microphone 
signal based on the IEEE 802.22 standard. FSC gives the 
best performance overall. 
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I. Introduction 

While the radio spectrum has become largely insufficient to 
those who demand its use, many already licensed bands remain 
underutilized [1]. The Federal Communications Commission 
(FCC) has considered providing unlicensed users with the 
opportunity to operate on a licensed spectrum in an 
opportunistic manner. Recently, cognitive radio (CR) [2]–[7] 
has emerged as a new communication technology aiming to 
solve the underutilization of spectrum resources by allowing 
unlicensed (secondary) users to dynamically utilize licensed 
bands that are left unused, without interference to licensed 
(primary) users. The first wireless access standard based on CR 
technology is that of TV white spaces in IEEE 802.22 [8]. Due 
to the legal rights of ownership surrounding the use of a 
spectrum band, a secondary user (SU) must vacate a band 
whenever a primary user (PU) reclaims its spectrum usage 
rights. The SU must be capable of knowing when the band is 
and is not available to them; that is, the presence and absence 
of a PU. Such a capability is known as spectrum sensing.  

Three parameters are defined to evaluate the efficiency of 
spectrum sensing — accuracy of detection, computational 
complexity, and sensing time. The accuracy of detection is 
defined by the rate of correct detection of PUs when such users 
are actually present and occupying the spectrums concerned. 
This is a prime concern of spectrum sensing because a PU 
must not be affected by an SU. On the other hand, detecting the 
presence of a PU when in fact the PU is absent, otherwise 
known as false detection, has to be minimized to fully utilize 
spectrum bands. The accuracy of detection is usually shown in 
terms of a statistic; that is, in terms of a probability, which is 
often referred to as the probability of detection (Pd). Likewise, 
false detection is sometimes referred to as the probability of 
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false alarm (Pfa). In terms of the probability of detection, the 
higher the probability, the less likely it is that a PU will 
experience interference. 

The second quality of service (QoS) parameter, 
computational complexity, is described by the computational 
burden. The complexity of a spectrum sensing technique 
affects both the amount of energy consumed by the technique 
during sensing and the latency of the technique. The higher the 
complexity, the higher the amount of energy consumed and the 
higher the latency, neither of which is desired. It generally 
comes at a cost when the spectrum sensing technique needs to 
improve its accuracy of detection.  

The third QoS is sensing time, which is highly related to 
computational complexity. It should be noted that the 
computational complexity of a spectrum sensing technique can 
also be described by sensing time, since this is increased when 
the computational burden is increased. From the perspective of 
sensing time, the more channels an SU monitors, the more 
opportunities they will have of accessing a licensed band. In 
addition, an increase in sensing time will result in a decrease in 
an SU’s throughput. It is stated in the IEEE 802.22 standard [9] 
that an SU needs to perform spectrum sensing within 2 s of a 
set sensing period with a false alarm probability of less than 0.1 
and a detection probability higher than 0.9. 

Generally, spectrum sensing techniques [10]–[24] can be 
classified into the following two groups: blind techniques and 
techniques based on prior knowledge of a signal. Blind 
techniques — energy detection (ED) [11]–[17], maximum 
eigenvalue detection (MED) [18], covariance absolute value 
(CAV) [18]–[20], and maximum to minimum eigenvalue 
(MME) detection [21]–[23] — determine the presence of PUs 
by measuring the energy or correlation of a received signal. 
Knowledge-based spectrum sensing techniques — matched 
filter detection (MFD) [11]–[15] and leading eigenvector 
detection (LED) [24] — require information on the patterns of 
signals from PUs to analyze observed signals. In general, 
knowledge-based techniques perform with higher accuracy 
than blind techniques. However, their computational burden 
and sensitivity to prior information are also higher than blind 
techniques. Furthermore, their performance is dependent upon 
on databases of patterns of PU signals; the pattern of a wireless 
microphone (WM) signal changes from one pattern to another 
in reality, even though it operates at the same frequency. The 
IEEE 802.22 standard categorized WM signals into three 
patterns — silent, soft speaker, and loud speaker [25]. If a new 
pattern belonging to a WM signal, one not yet in the database, 
is observed, then the accuracy of the knowledge-based 
techniques performances will drop. To keep track of all the 
possible patterns, large-sized databases are required, which in 
turn, would require the use of large memory spaces. It is factors 

such as these that will eventually result in a high computational 
time. 

In this paper, a novel spectrum sensing algorithm, fast 
spectrum sensing with coordinate system (FSC), is proposed. 
The FSC algorithm is a knowledge-based technique, whereby 
the information of a PU is a prerequisite. The main difference 
from MFD and LED is that only significant features of 
original signals are used to construct a coordinate system. 
While these features reveal the intrinsic patterns of a PU, their 
dimension is much smaller than the original signal. To 
construct the new coordinate system, a feature-extraction 
process and feature-selection processes of a principal 
component analysis (PCA) [26]–[27] algorithm are adopted. 
To determine the existence of a PU, the FSC algorithm 
measures the percentage (weight) of correspondence between 
the received signal and a coordinate system. The magnitude 
of this weight will rise when a PU exists. Alternatively, it will 
fall when a PU does not exist. The FSC algorithm consumes 
little memory, requires little computational burden, and has a 
short sensing time. 

In addition, this paper investigates the performance of six 
conventional spectrum sensing techniques — ED, MED, CAV, 
MME, MFD, and LED — with three WM signals. Most 
related literature focuses on detecting a specific pattern of WM 
signal; for example, an SU receiving only a silent WM signal. 
This paper provides a more comprehensive study in that it 
considers the fact that an SU can receive unpredictable patterns 
of a WM signal. The probability of detection and the sensing 
time are the two parameters used to evaluate the performance 
of spectrum sensing. The preliminary results show that MFD 
offers an accurate detection over a wide range of SNRs      
(–30 dB to 0 dB). On the other hand, ED gives the maximum 
number of sensing channels per sensing period         
(3,602 CHs/period). Thus, we use these evaluation results as a 
benchmark with which to compare the FSC algorithm. From 
the simulation results, it can be seen that the FSC algorithm 
performs spectrum sensing as fast as the ED technique while 
offering an accurate detection performance comparable to that 
of MFD. 

In this paper, the following notation is used: superscript  
T( )  and *( )  stand for transpose and conjugate, respectively.  

The remainder of this paper is organized as follows.  
Section II outlines the theoretical basis of spectrum sensing 
techniques, as well as providing a preliminary study on the 
effect of WM signal patterns on the performance of 
conventional spectrum sensing techniques. The framework for 
the FSC algorithm is presented in Section III. The simulation 
results and performance comparisons are shown in Section IV. 
Finally, conclusions are presented in Section V. 
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II. Related Study and Spectrum Sensing Techniques 

This section gives a brief introduction to WM signals based 
on the IEEE 802.22 standard and conventional spectrum 
sensing techniques, as well as providing a preliminary study of 
the effect of the patterns of WM signals on the performance of 
conventional spectrum sensing techniques. 

1. Spectrum Sensing Techniques 

Spectrum sensing is a critical function of CR that 
periodically detects the existence of a PU during its sensing 
period. Generally, spectrum sensing techniques for transmitter 
detection can be broadly classified into the following two 
types: spectrum sensing techniques based on prior knowledge 
of a signal and blind spectrum sensing techniques. To detect the 
existence of a PU, there are two hypothesis models of a 
received signal that are expressed as follows: 

 
 

0

1

when a PU is absent ,

when a PU is present ,

H

H

 


η
x

s η
       (1) 

where x is the signal an SU receives, η is additive white 
Gaussian noise (AWGN), and s is the signal transmitted by a 
PU. In general, the performance of a spectrum sensing 
technique can be evaluated through either a probability of 
detection or a probability of false alarm. A mathematical model 
of the various spectrum sensing techniques mentioned in this 
paper can be summarized as follows. 

A. ED 

Energy detection [11]–[17] is one of the most widely used 
techniques because it is easy to implement and does not require 
any prior knowledge of a signal’s pattern. However, the 
performance of detection greatly degrades at low SNRs. 
Mathematical models of both Pfa(ED) and Pd(ED) are given by  

2

ED
1

1
,  ( )

N

n

Y x n
N 

                 (2) 

where YED and N denote the test statistic and the sample 
interval, respectively. The threshold is determined from the 
probability of false alarm (Pfa(ED)). In addition, the probability 
of detection (Pd(ED)) can also be used. Mathematical models of 
both the probability of false alarm and the probability of 
detection are given by 

ED
fa(ED) 2

 1P Q N



  
       η

,             (3) 
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where ED  denotes the decision threshold, Q(·) is a standard 

Gaussian complementary cumulative distribution function, 
2 η  is the variance of noise, and 2 s  is the variance of a 

desired signal. To determine the existence of a PU, the test 

statistic (YED) is compared to the decision threshold ED( ).  

The spectrum band is vacant if the test statistic is less than the 

threshold.  

B. MFD 

Matched filter detection [11]–[15] uses the correlation 
between the received and known signals. The output from 
MFD is compared to a threshold to determine the existence of 
a PU. The test statistic of MFD, YMED, is given by  

1
*

MFD
0

  ( ) ( ),
N

n

Y x n s n




               (6) 

where s*(n) is the conjugate of the known signal. The decision 

threshold, MFD ,  is determined from the probability of false 

alarm, Pfa(MFD). Alternatively, the probability of detection, 

Pd(MFD), can also be used as the decision threshold. 

Mathematical models for Pfa(MFD) and Pd (MFD) are given as 

     MFD
fa(MFD)  P Q

E



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            MFD
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 
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,           (8) 

where E is the energy of desired signal. 

C. MED 

Maximum eigenvalue detection [18] uses the maximum 
eigenvalue of the sample covariance matrix of the received 
signal. A received signal comprising L consecutive samples is 
given by 

 T( ) ( 1), ... , ( 1)x n x n x n L   x ,         (9) 

 T( ) ( 1) , , ( 1) ,s n s n s n L    s         (10) 

T[ ( ) ( 1), , ( 1) ,]n n n L      η         (11) 

where L is a smoothing factor. Since the statistical covariance 
matrix cannot be directly calculated, the sample covariance 
matrix of the received signal is computed by the following 
procedure: 
1) The sample auto-correlations of the received signal are 
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firstly expressed as 

1
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1
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2) Secondly, the sample covariance matrix of the received 
signal is calculated as 
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       (13) 

Note that the sample covariance matrix is a Toeplitz and 
symmetric matrix. 

3) Thirdly, the eigenvalues of (13) are calculated using an 

eigen-decomposition algorithm. Note that only the 

maximum eigenvalue of the received signal, max ,  is 

used in step 4 to determine the existence of a PU. 

4) Finally, the existence of a PU can now be determined from 

the value of max .   

2
max MED( )N   η   when a PU is present,   (14) 

2
max MED( )N   η  when a PU is absent,    (15) 

where MED  denotes a predetermined decision threshold. 

Since the sample covariance matrix of the noise is nearly a 

Wishart random matrix, MED is analyzed using the probability 

distribution of the normalized largest eigenvalue — referred  

to as “Tracy–Widom distribution.” Thereby, fa(MED)P  can be 

expressed as 
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D. CAV Detection 

With CAV [18]–[20], an SU determines the existence of a 
PU from the received signal. This is done by comparing the 
auto-correlation of the received signal to the CAV threshold. 
However, CAV will perform poorly when the auto-correlation 
of the received signal is low. The test statistic of CAV, YCAV, is 
given by 
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The threshold for CAV detection, CAV ,  can be expressed as 
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 A PU is present if CAV CAV .Y   Mathematical models for  
Pfa(CAV) and Pd(CAV) are given as 
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where L  is given by 

1

1

2
( 1)

L

L l
l

L
L

 




            (23) 

and l is given by 
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E. MME 

The procedure of MME [21]–[23] is similar to MED. 
However, the MME method determines the existence of a PU 
by comparing the ratio of the maximum and minimum 
eigenvalues with the threshold MME.  MME detection can be 
calculated using (13). The test statistic for the MME detection 
method is given by 

max
MME

min
 .Y 

              (25) 

The probability of false alarm for MME detection is given by 

  2

MME
fa(MME)

  1 N LP F
v

      
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.      (26) 

F. LED 

Leading eigenvector detection [24] calculates the correlation 
between the leading eigenvector of the received signal and the 
leading eigenvector of the known signal. The output is 
compared to a threshold to determine the existence of a PU. 
Since LED keeps only the most significant feature of the 
received signal, the technique requires less memory than MFD. 
However, since the LED technique needs to calculate the 
leading eigenvector of the received signal, the sensing time and 
complexity of computation is increased. Let us define the 
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following PU signals, , 1,2, ... , ,i i Mx  each of which have 
d dimensions, as 
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The LED procedure can then be summarized as follows: 
1) The sample covariance matrix of a received signal xi is 

given by 

T

1

1
.

M

i i
iM 

 xR x x              (28) 

Note that we assume the sample mean to be zero. 
2) The eigenvalues and eigenvectors of the received signal  

can be calculated using (28). Only an eigenvector 
corresponding to the largest eigenvalue, v1, is considered. 
The test statistic for LED is given by 

LED 1 1
0,1,2, ... ,

1

 max [ ]ˆ [ ] .
d

l d
j

Y j j l




 v v         (29) 

 3) The existence of a PU can now be determined from the 
value of YLED. 

YLED > LED  when a PU is present,         (30) 

LED LEDY   when a PU is absent,          (31) 

where 1v̂  is the leading eigenvector of the received signal, 

v1 is the leading eigenvector of the known signal, and 

LED  is a predetermined threshold. 

2. Preliminary Experiments 

As mentioned in Section I, the pattern of a received WM 
signal may change despite the fact that it operates at the same 
carrier frequency. In this section, we evaluate the performance 
of six conventional spectrum sensing techniques — ED, MED, 
CAV, MME, MFD, and LED — under the assumption that a 
received WM signal has a randomly occurring pattern. Two 
important factors — Pd and sensing time of each technique — 
are considered in our performance evaluation.  

An AWGN is used as a communication channel between a 
PU and an SU. Based on IEEE 802.22 [25], PU’s transmitted 
signal can be expressed as 

 c c f

0

( ) cos 2π t 2π ( )d ,
t

s t A f k m  
 

  
 

        (32) 

m( ) sin( ),m f t                          (33) 

Table 1. Model of WM signal model [25]. 

 Silent Soft speaker Loud speaker

m(τ) frequency (kHz) 32 3.9 13.4 

FM deviation factor 
(kHz) (kf) 

±5 ±15 ±32.6 

 

Table 2. Different knowledge bases of PU signal known to an SU. 

Case Description 

1 Silent of WM signal is known by SU. 

2 Soft speaker of WM signal is known by SU. 

3 Loud speaker of WM signal is known by SU. 

4 All three patterns of WM signal are known by SU. 

 

 
where Ac is the amplitude of a carrier signal, ( )m   is a 
modulating signal, fm is message frequency, fc is carrier 
frequency, and kf is a frequency modulation (FM) deviation 
factor. The values of both the modulating signal ( )m   and 
the FM deviation factor kf (see Table 1) represent the three 
different patterns of a WM signal; that is, silent, soft speaker, 
and loud speaker. To study spectrum sensing performance 
under different levels of knowledge, the SU is equipped with 
four different knowledge bases, as described in Table 2. 

The simulation results of six conventional spectrum sensing 
techniques — ED, MED, CAV, MME, MFD, and LED — are 
shown in Table 3. As four of the six techniques — ED, MED, 
CAV, and MME — are blind techniques, their detection 
performances will not be affected by different knowledge bases. 
Hence, the individual results of these blind techniques are not 
shown; rather, they are shown collectively due to the fact that 
they have similar detection performances. On the other hand, 
different knowledge bases greatly affect the detection 
performances of the knowledge-based techniques — MFD and 
LED.  

Figure 1 shows the simulation results of MFD and LED for 
the four cases outlined in Table 2. The graph plots Pd as a 
function of SNR. It is clear that the detection performance of 
MFD is greatly affected by the knowledge base of PU’s signal. 
When SU observes a pattern of WM signal that is not in the 
knowledge base, the detection performance of MFD greatly 
degrades. 

As depicted in the figure, the detection performance of LED 
in cases 1–4 is shown using only a single line. This is because 
the detection performances were practically identical to each 
other, due to the fact that the leading eigenvectors of the WM 
signal patterns were similar to each other. Thus, the detection 
performance of LED was not affected by a difference in WM 
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Table 3. Performance comparison of conventional spectrum sensing techniques. 

Prior knowledge Ability to detect WM signal 
Sensing technique Waveform 

pattern 
Noise power

Memory 
(kbytes) 

Critical SNR 

d( 0.9)P   
Average sensing 

time (ms) 
Channels/sensing 

period of 2 s 

ED   0 –16 dB 0.04997 3,602 

MED   0 –16 dB 2.6 69 

CAV   0 –16 dB 2.5 72 

Blind spectrum 
sensing 

MME   0 –16 dB 2.9 62 

Case 1   40 –8 dB 2.5 72 

Case 2   40 –30 dB 2.5 72 

Case 3   40 –30 dB 2.5 72 
MFD 

Case 4   120 –30 dB 5.4 33 

Case 1   0.192 –18 dB 78.09 2 

Case 2   0.064 –18 dB 78.09 2 

Case 3   0.064 –18 dB 78.09 2 

Spectrum sensing 
based on prior 

knowledge 

LED 

Case 4   0.192 –18 dB 80.70 2 

 

 

 

Fig. 1. Detection performance of MFD and LED under different 
received WM signal cases. 
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signal pattern. However, LED inflicts a high computational 
burden upon the SU when performing spectrum sensing; thus, 
the associated sensing time is often substantial. 

Figure 2 shows the performance comparison of conventional 
spectrum sensing techniques when the patterns of WM signals 
are known. MFD offers the best detection performance among 
the spectrum sensing techniques. When evaluating the 
performance of MME, the calculated MME threshold 
(theoretical), MME ,  offers an implausible performance at low 
SNRs.  

In [20], the authors improve the detection performance of 
MME by finding new thresholds through Monte Carlo 

 

 

Fig. 2. Performance comparison of conventional spectrum 
sensing techniques when patterns of PU signal are 
known. 
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simulations. To compare the performance of MME under the 
different types of thresholds (theoretical and Monte Carlo 
simulations), we present the performance of “MME Theory” 
and “MME Simulation” in Fig. 2. Note that “MME Theory” 
denotes experimental results where the threshold is calculated 
from a theoretical formula. “MME Simulation” denotes 
experimental results where the threshold is estimated through 
Monte Carlo simulations. 

Table 3 gives a performance comparison of the conventional 
spectrum sensing techniques for various cases of prior 
knowledge. The SNR required of a spectrum sensing technique 
to meet the required accuracy of detection (that is, Pd ≥ 0.9) [9], 
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is given in the “Critical SNR” column of Table 3. The lower 
the “Critical SNR” value, the more tolerant to noise the 
technique is. From Table 3, the knowledge-based spectrum 
sensing techniques — MFD and LED — are confirmed to be 
more tolerant to noise than the blind techniques.  

On the other hand, the average sensing time shown for each 
technique is based on the average from the Monte Carlo 
simulations. As shown in Table 3, ED consumes the least 
average sensing time, whereas LED consumes the longest 
average sensing time. These average sensing time values are 
used as a benchmark when evaluating the average sensing time 
of the FSC algorithm. 

Moreover, the results in Table 3 show that ED offers the 
maximum number of channels per sensing period. However, 
there is no standard or requirement that defines the minimum 
number of channels that should be monitored in a given 
sensing period. If the number of channels per sensing period 
increases, then the SU will have more opportunities to utilize 
the unused licensed band. 

III. FSC 

In this section, the FSC algorithm is described in detail with 
mathematical models. The FSC algorithm is a spectrum 
sensing technique that requires prior knowledge of a PU’s 
signals. The framework for the FSC algorithm can be 
categorized into two phases — coordinate system construction 
and sensing. The coordinate system must be predetermined 
from the two most significant features of WM signals and kept 
in the knowledge base. The sensing phase determines the 
existence of a PU by comparing the FSC decision statistic 
(YFSC) to the FSC threshold FSC( ).  The decision statistic is 
calculated by projecting the PU’s signal onto the predetermined 
coordinate system.  

1. Coordinate System Construction 

In this section, our coordinate system is introduced. The new 
coordinate system is of a lower dimension than the original 

  

Fig. 3. Coordinate system construction phase of FSC algorithm.
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data space. The main objectives of this phase are to select the 
two most significant features of WM signals and to construct a 
coordinate system. Our coordinate system construction process 
(as shown in Fig. 3) exploits the feature extraction and 
selection process of a PCA algorithm [26]–[27] to filter out the 
two most significant features of WM signals and then uses 
them as the axes for a new coordinate system. Due to the 
smaller size of the new coordinate system, the FSC algorithm 
consumes less memory, has less computational burden, and has 
a short sensing time.  

We assume that the WM signals of a PU are known to an SU. 

These WM signals are used as the training signals. Let the 

vectors s1, s2,···, sM represent WM signals. These vectors are 

referred to as training vectors. The training vectors are given by 
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         (34)  

The procedure for the coordinate system construction phase is 
described as follows. 

A. Feature Extraction 

Firstly, we eliminate the common features of the WM signals 
by subtracting the average WM signals vector (ε) from each 
training vector (si). 

,i i β s ε                   (35) 

where βi is a vector that contains the significant features of the 

WM signals. The average WM signals vector (ε) can be 

expressed as 

1

.
1 M

i
iM 

 ε s                  (36) 

Next, we compute the covariance matrix (C) of βi, which is 
given by 

T

1

.
1 M

i i
iM 

 C β β               (37) 

From the covariance matrix, a matrix of eigenvectors ( V  

1 2[ ]dv v v ) and a vector of corresponding eigenvalues 
T

1 2( [ ] )d  λ   can be obtained by using the 

aforementioned eigen-decomposition algorithm. 

B. Feature Selection 

From the matrix of eigenvectors (V), we keep only the k best 
eigenvectors (that is, those that correspond to the k largest 
eigenvalues), and the resulting set is then used to form the new 
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coordinate system. The k best eigenvectors are determined by 

1 1

 95%,
k d

i i
i i

 
 

               (38) 

where d is the number of eigenvalues in set λ.  
It is clear that 95% of the total number of features present in 

the WM signals is a sufficient amount to be representative of 
all the existing features. Hence, having decided to only select 
the k best eigenvectors, the dimension of the WM signals is 
reduced. Reducing the dimension of the WM signals avoids a 
huge amount of computational burden. Moreover, the effect of 
noise from the original signal is avoided due to the reduction in 
dimension of the WM signals. Furthermore, the FSC algorithm 
is tolerant to noise.  

2. Sensing Phase 

In the sensing phase (see Fig. 4), the weight of 

correspondence between the received WM signal and the new 

coordinate system is calculated by projecting the received 

signal onto the coordinate system. This weight describes the 

distribution of the received signal in the new coordinate system. 

The weight, given as a vector ( ˆ )x , can be expressed as 

T ( ).ˆ  x V x ε                  (39) 

The magnitude of the weight vector is defined as the FSC 
decision statistic (YFSC). The magnitude of the weight vector 
will rise when a PU is present. Otherwise, the magnitude of the 
weight vector will fall when a PU is not present. The FSC 
decision statistic (YFSC) can be expressed as 

   
2

2 22
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Y
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 x x x         (40) 

 A mathematical model for the probability of false alarm of 
the FSC algorithm is given by 

 fa(FSC) FSC FSC 0| .P P Y H           (41) 

Under condition H0, 
 

Fig. 4. Sensing phase of FSC algorithm. 
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 Note that 
iH  is the mean value of Hi and that nm  is the nth 

order moment of the FSC decision statistic (YFSC). 
Similar to the probability of false alarm, the probability of 

detection for the FSC algorithm can be expressed as 

 d(FSC) FSC FSC 1| .P P Y H               (47) 

Under condition H1, 

T (ˆ )  s η s ηx V x ε ,                         (48) 
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In addition, the probability of misdetection of the FSC 
algorithm is given by  

m(FSC) d(FSC)1P P  .               (53) 

IV. Simulation Results 

In this section, we give the simulation results of eight 
spectrum sensing techniques. The transmitted PU signals are 
assumed to be WM signals, based on IEEE 802.22, whereby 
the patterns of the WM signals are assumed to be in the  
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Fig. 5. Probability of detection vs. SNRs of ED, MED, CAV, 
MME, MFD, LED, and FSC. 
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knowledge base of the SU. The parameters of the WM signals 
are shown in Table 1. A single received WM signal is assumed 
to contain one of three randomly occurring patterns. The 
communication channel between the transmitter and the 
receiver is assumed to be an AWGN channel, and the SNR at 
the receiver is assumed to be between –30 dB and 0 dB. The 
other parameters that were used in the simulations took the 
following values: n = 5,000; L = 10; and Pfa = 0.1. All the 
experiments are performed under Windows 7 and MATLAB 
running on a PC equipped with an Intel Dual-Core CPU at 
2.93 GHz and 4 GB RAM memory.  

As depicted in Fig. 5, the FSC algorithm gives a better 
detection performance than the other conventional spectrum 
sensing techniques, except MFD, which is known as the 
optimum spectrum sensing technique. The critical SNR of the 
FSC algorithm is –24 dB (see Table 4). From the perspective of 
sensing time, the FSC algorithm consumes less sensing time 
than the other conventional techniques, except ED (see   
Table 4). The reason for this is that the FSC algorithm performs 
spectrum sensing with little computational burden due to the 
small size of the weight vector ˆ( )x . Calculated from the 
averaged sensing time of FSC, the FSC algorithm can sense 
3,370 channels per sensing period. When compared with the 
results in Table 3, we can see that the FSC algorithm can 
perform spectrum sensing with a number of communication 
channels that rivals that of ED. 

To validate the performance of the FSC algorithm, graphs of 
Pd(FSC), Pm(FSC), and Pfa(FSC) are shown in Fig. 6(a). In this figure, 
as SNR increases, Pd(FSC) increases while Pm(FSC) and Pfa(FSC) 
decrease. The simulation results are as we expected, and this is 
explained as follows. By projecting the received signal to the 
proposed coordinate system, we obtained the weight vector 
and weight of correspondence between the received signal  

 

Fig. 6. Performance of FSC algorithm. 
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Table 4. Comparison of critical SNR and average sensing time (case 
4). 

Sensing technique 
Critical SNR 

d( 0.9)P   
Average sensing 

time (ms) 

ED –16 dB 0.0499 

MED –16 dB 2.6 

CAV –16 dB 2.5 

Blind spectrum 
sensing 

MME –16 dB 2.9 

MFD –30 dB 5.4 

LED –18 dB 30.7 
Spectrum sensing 

based on prior 
knowledge FSC –24 dB 0.0534 

 

 
 

Fig. 7. Performance comparison using AHP algorithm. 
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and the coordinate system. We found that the weight vector 
effectively represents the WM signal, especially when SNR is  
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higher than –18 dB. When SNR is lower than –18 dB, where 
noise power is much greater than the WM signal power, the 
weight vector is contaminated with noise. Hence, the 
magnitude of the weight of correspondence between the 
received signal and the coordinate system is lower than the 
predetermined FSC threshold, which causes misdetection.  

However, Pd(FSC) is still higher than the Pd of other 
conventional techniques, including ED, MED, CAV, MME, 
and LED. This is because the effect of the noise on the weight 
vector is less than that on the WM signal.  

To evaluate the trade-off between Pm(FSC) and Pfa(FSC), Pm(FSC) 
is plotted as a function of Pfa(FSC), as shown in Fig. 6(b). It 
should be noted that Pm(FSC) is greater than 0 when the SNR is 
lower than –18 dB; hence, Pm(FSC) at three different SNRs —  
–20 dB, –26 dB, and –30 dB — is shown. From Fig. 6(b), it 
can be seen that Pm(FSC) slightly decreases when Pfa(FSC) 
increases, which is similar to what happens in the cases of the 
other conventional techniques. 

To evaluate the overall performances of the spectrum sensing 
techniques, we combine two performance metrics, Pd and 
average sensing time of each technique, using a standard multi-
criteria ranking technique — analytic hierarchy process [28]. In 
the first step, we have to determine the importance ratio 
between Pd and average sensing time, which has never been 
standardized. Herein, the importance ratios are set as follows: 
1:7, 1:5, 1:3, 1:2, 1:1, 2:1, 3:1, 5:1, and 7:1. It should be noted 
that the importance ratio of 1:7 means that the Pd is 7 times 
more important than the average sensing time, while 7:1 means 
the Pd is 7 times less important than the average sensing time. 
As shown in Fig. 7, the FSC algorithm gives the highest overall 
performance at any weight of importance. The reason is that 
the FSC algorithm gives a high rate of detection while utilizing 
a short sensing time. 

V. Conclusion 

In this paper, a novel spectrum sensing algorithm, fast 
spectrum sensing with coordinate system (FSC), is proposed. 
The FSC extracts only the significant features of the WM 
signals to build a new coordinate system. The FSC algorithm 
determines the existence of a PU by comparing the FSC 
decision statistic to the FSC threshold. Using our new 
coordinate system, the FSC requires less space for SU’s 
knowledge base compared to that of other knowledge-based 
techniques. By measuring the magnitude of the weight of 
correspondence between the received signal and the coordinate 
system, FSC performs spectrum sensing with little 
computational burden and utilizes a short sensing time, while 
offering a detection accuracy close to that of MFD. The FSC 
can be well implemented by an SU, when the patterns of the 

PU signal are known to the SU, with much less computational 
complexity and sensing time than any of the other knowledge-
based spectrum sensing techniques considered in this paper. 
Moreover, FSC is appropriate for real-time application because 
it uses a sensing time that is as short as that of ED. 
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