
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, Aug. 2015 2984
Copyright ⓒ 2015 KSII

A Lossless Data Hiding Scheme for VQ
Indexes Based on Joint Neighboring

Coding

Andrew Rudder and The Duc Kieu*
Department of Computing and Information Technology,

Faculty of Science and Technology,
The University of the West Indies, St. Augustine, Trinidad and Tobago

[e-mail: andrew.rudder@gmail.com; ktduc0323@yahoo.com.au]
*Corresponding author: The Duc Kieu

Received January 11, 2015; revised May 8, 2015; accepted June 23, 2015;

 published August 31, 2015

Abstract

Designing a new reversible data hiding technique with a high embedding rate and a low
compression rate for vector quantization (VQ) compressed images is encouraged. This paper
proposes a novel lossless data hiding scheme for VQ-compressed images based on the joint
neighboring coding technique. The proposed method uses the difference values between a
current VQ index and its left and upper neighboring VQ indexes to embed n secret bits into
one VQ index, where n = 1, 2, 3, or 4. The experimental results show that the proposed scheme
achieves the embedding rates of 1, 2, 3, and 4 bits per index (bpi) with the corresponding
average compression rates of 0.420, 0.483, 0.545, and 0.608 bit per pixel (bpp) for a 256 sized
codebook. These results confirm that our scheme performs better than other selected reversible
data hiding schemes.

Keywords: Data hiding, reversible data embedding, watermarking, steganography, vector
quantization

http://dx.doi.org/10.3837/tiis.2015.08.013 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2985

1. Introduction

The ability to transmit information securely has always been of great importance. As new
ways and formats are developed for sending, storing, and representing information, novel
methods must also be developed to ensure the security of sensitive information. In our highly
connected world and with the prevalent use of public network channels for sending sensitive
information, developing new methods to protect secret information from unauthorized entities
is of paramount importance to both individuals and organizations.
Cryptography is one of the methods used for securing sensitive information [1-3]. It has
proven to be a good method for securing information, however it has its own weakness. That is,
the encrypted information is fully exposed during transmission. As a result, attackers can
procure the encrypted data and decrypt it once the encryption method is known. In the case
where the encryption method is not known, an attacker can still store the encrypted data and
attempt to decrypt it at his leisure.

The information hiding (also called data hiding or data embedding) field seeks to protect
sensitive information by hiding the fact that a message even exists [4]. This is done by hiding
the sensitive data or secret message within another medium called a cover object that does not
raise suspicion when transmitted [5]. Two areas of study have emerged within the information
hiding field, namely digital watermarking and steganography [6]. In watermarking, the
information embedded into a cover object (e.g., image, audio, video, or text) is pertinent to the
cover object and is used to verify its validity. In steganography, however, the main purpose of
the cover object is to hide the fact that covert communication is occurring.

All techniques developed within the steganographic and watermarking fields can be
categorized into reversible (also called lossless, invertible, or distortion-free) and irreversible
(also called lossy) techniques. Reversible techniques [7-9] are those that guarantee the perfect
reconstruction of a cover object after a secret message has been extracted. Irreversible
techniques cannot guarantee this [10,11]. Whether a reversible or irreversible technique is
used in a particular situation depends on the application. If the cover object must be fully
recovered such as for military or healthcare purposes, a reversible technique must be chosen.
However, for situations where the full recovery of the cover object is not required, an
irreversible technique may be applied.

Information hiding techniques can be applied to three domains, namely the spatial [12-14],
frequency (or transformed) [15,16], and compressed [17-22] domains. In the spatial domain,
information is hidden by modifying the amplitudes of the pixel values whereas in the
frequency domain it is achieved by modifying the transformed coefficients. Many image
compression algorithms have been used for storing and transmitting images across networks.
Methods within the compressed domain such as vector quantization (VQ) [23] seek to embed
secret information during the encoding of the VQ index table. Each domain has its own
strengths and weaknesses with regard to embedding (or hiding) capacity, storage space,
processing time, and other features. This article proposes a lossless data hiding system in the
VQ-compressed domain that is suitable to low bandwidth communication channels.

In 2009, Chang et al. [24] proposed a reversible information hiding scheme for VQ indices
using joint neighboring coding (JNC). Their method hides one secret bit into a VQ index in
raster scan order. The average embedding rate of this method is 0.984 bpi with a compression
rate of 0.510 bpp for a 256 sized codebook. The main weakness of their method is that it

2986 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

embeds less than 1 bpi and their compression rate is greater than 0.5 bpp. Later in 2009, Wang
and Lu [25] proposed a path optional lossless data hiding method also based on JNC to
improve the embedding capacity of Chang et al.’s scheme [24]. Wang and Lu’s method uses
two paths to allow a user to select the path 1 or 2 to conceal two or three secret bits into one VQ
index, respectively. For a codebook of size 256, this scheme is able to achieve the average
embedding rate of 1.953 bpi with the compression rate of 0.573 bpp for the first path and the
average embedding rate of 2.884 bpi with the compression rate of 0.641 bpp for the second
path. While there is an improvement in the embedding rate, the scheme however has a high
compression rate. In 2013, Lee et al. [26] presented a lossless data hiding scheme that achieves
the embedding rate of 2.952 bpi with the compression rate of 0.546 bpp for the 256 sized
codebook. This scheme improves the embedding capacity and compression rate of the
previous schemes [24, 25]. Their scheme, however, degrades quickly as the codebook size is
increased. The two schemes [24, 25] were also improved by Kieu and Ramroach [27]. In this
scheme, the first column and the first row of the VQ index table are used as the seed area. That
is, there is no secret data embedding in this region. Consequently, the embedding rate and
compression rate of this method can be further improved by eliminating the seed area.

To surmount the weaknesses of Chang et al.’s [24], Wang and Lu’s [25], and Lee et al.’s
[26] methods, we propose a novel lossless data hiding scheme for VQ-compressed images
based on JNC. The proposed method conceals n secret bits, where n = 1, 2, 3, or 4, into each
VQ index. The scheme achieves the various embedding rates of 1, 2, 3, and 4 bpi with
compression rates of 0.420, 0.483, 0.545, and 0.608 bpp, respectively, based on the codebook
sized 256. These results demonstrate that the proposed approach is better than previous
methods [24-26].

The rest of this paper unfolds in the following order. An overview of vector quantization,
the methods proposed by Chang et al. [24], Wang and Lu [25], and Lee et al. [26] are covered
in Section 2. The proposed method is then presented in Section 3. The experimental results are
presented in Section 4, followed by a conclusion in Section 5.

2. Related Works
In this section, we present a review of the vector quantization (VQ) and Lee et al.’s method
[26].

2.1 Vector Quantization
Vector quantization (VQ) is a lossy data compression method commonly used in image
compression that is based on the block coding principle [23]. There are three steps associated
with this method: codebook generation, VQ encoding, and VQ decoding. In the first step, the
codebook CB containing N k-dimensional codewords CWi’s is generated by using the LBG
clustering algorithm [28], where i = 0, 1, …, N - 1 and CWi = (cwi1, cwi2, …, cwik). The
greyscale image I sized H×W to be compressed is then partitioned into non-overlapping image
block B’s sized hs×ws, where hs×ws = k (e.g., H = W = 512, N = 256, hs = ws = 4, k = 16). In
the second step, the VQ encoder takes each image block B in raster scan order and compresses
it by examining the codebook CB and selecting the codeword CWi with the minimum
Euclidean distance from B. The index value of the selected codeword CWi is then inserted into
the VQ index table T sized (H/hs)×(W/ws) in raster scan order. The final step is the
reconstruction of the original image I from the received VQ index table T and the codebook

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2987

CB. Each block B of the original image is reconstructed by taking the respective VQ index in T
and looking up the codeword CWi associated with it.

2.2 Lee et al.’s Method
Lee et al. [26] proposed a lossless data hiding method for VQ indices based on neighboring
correlation. In general, the scheme embeds r or v secret bits from a secret message S into one
VQ index of a VQ index table T sized (H/hs)×(W/ws) of a VQ-compressed image I sized H×W,
where hs×ws represents the image block size used during the VQ encoding process. In this
scheme, the codewords in the codebook are sorted according to the mean values of the
codewords before the VQ encoding is carried out. The VQ index table T is composed of
(H/hs)×(W/ws) VQ indices Ti,j’s, where i = 0, 1, ..., (H/hs) - 1 and j = 0, 1, ..., (W/ws) - 1. Lee et
al.’s method uses a predefined parameter z that is half the length of the coarse sub-codebook.
The parameter r is the number of secret bits to be hidden in the case of a fine hit and v is the
number of secret bits to be concealed in the case of a coarse hit. The values of r and v are
calculated by r = log2N - 2, v = log2N - 3 - log2(2z), where N is the codebook size. Let y be
the current VQ index to encode (i.e., y = Ti,j), yl be the VQ index to the left (i.e., yl = Ti,j-1) and
yt be the VQ index above (i.e., yt = Ti-1,j). Additionally, let fsb0 and fsb1 be the fine
sub-codebooks associated with yl and yt, respectively, and let csb0 and csb1 be the coarse
sub-codebooks associated with yl and yt, respectively. These sub-codebooks are defined by
fsb0 = {yl}, fsb1 = {yt}, csb0 = {yl - z, ..., yl - 1, yl + 1, ..., yl + z}, and csb1 = {yt - z, ..., yt - 1,
yt + 1, ..., yt + z}, respectively. If y belongs to fsb0 or fsb1, a fine hit state is obtained. If y
belongs to csb0 or csb1, a coarse hit state is achieved, otherwise a miss state is obtained.

There are three main cases in their scheme. The first case occurs if y belongs to either fsb0
(i.e., y = yl) or fsb0 (i.e., y = yt) and this constitutes a fine hit. In this case, a 2-bit indicator code
00 or 01 is appended to the output code stream CS, followed by the next r secret bits s1s2...sr
from the secret stream S (i.e., CS = CS||00||s1s2...sr or CS = CS||01||s1s2...sr). The second case is
where y either exists in csb0 or csb1 and this constitutes a coarse hit. In this case, the
log2(2z)-bit binary representation of the y’s position, denoted as csbpos, in the corresponding
coarse sub-codebook is recorded. If y exists in csb0, the bit stream 100||csbpos||s1s2...sv is
appended to the output code stream CS. If y exists in csb1, the bit stream 101||csbpos||s1s2...sv is
added to the output code stream CS. In the final case where y is not equal to yl or yt and does
not belong to csb0 or csb1 (i.e., miss state), the bit stream 11||y2 is appended to the output code
stream CS, where y2 is the log2N-bit binary representation of y.

The above embedding procedure is continued until all remaining VQ indices of T are
processed. The other details of this method can be found in [26]. Lee et al.’s approach
performs very well for smooth images (e.g., Tiffany image) but it has a poor performance for
complex images (e.g., Baboon image). In addition, the performance of this scheme degrades
quickly when the codebook size N is greater than 128 (e.g., N = 256, 512, and 1024).

3. The Proposed Method

3.1 The Encoding and Embedding Phase
The large compression rates of Chang et al.’s [24] and Wang Lu et al.’s [25] schemes may
arouse attackers’ suspicions. In this section, we present the proposed lossless data hiding
scheme for VQ indexes based on joint neighboring coding [24]. The proposed scheme can
embed n secret bits per VQ index in raster scan order, where n = 1, 2, 3 or 4. We limit the value
of n to be less than or equal to 4 because for values of n greater than 4, the smallest average

2988 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

compression rate attainable is greater than 0.608 bpp for the codebook size N = 256. To
increase the security of secret data distribution, it is supposed that the secret data has been
encrypted by using a well-known cryptosystem such as AES [2] before secret data hiding takes
place. Therefore, even though adversaries can somehow extract the encrypted secret data from
the output code stream, they still cannot comprehend the real information without also having
a secure decryption key.

Firstly, a greyscale cover image I sized H×W is compressed by a VQ encoder that uses an
N-sized codebook CB containing N k-dimensional codewords (e.g., H = W = 512, N = 256, and
k = 16). The proposed method uses the codebook that is sorted as mentioned in Chang et al.’s
method [24]. The result of which is a VQ index table T sized (H/hs)×(W/ws), where hs×ws is
the image block size used by the VQ encoder (e.g., hs = ws = 4). The VQ index table T = {Ti,j},
where 0 ≤ i ≤ H/hs - 1, 0 ≤ j ≤ W/ws - 1, and 0 ≤ Ti,j ≤ N - 1, is scanned in raster scan order for
encoding and embedding. Secret data hiding occurs during the encoding of each VQ index.
This process conceals n secret bits from the secret message S into each VQ index in T. The first
VQ index y located at the first row and column of T (i.e., y = T0,0) is converted to its log2N-bit
binary representation y2. The first n secret bits s1s2...sn are then read from S and y is encoded by
y2||s1s2...sn, where || denotes the concatenation operation. The encoded bit stream y2||s1s2...sn is
then appended to the output code stream CS (i.e., CS = CS||y2||s1s2...sn).

For all remaining VQ indices, the encoding and embedding process is performed as
follows. The next VQ index y is read from T (i.e., y = Ti,j ≠ T0,0). In general, the encoding is
performed on each VQ index by using two difference values dl and du, where dl is the
difference between the VQ index to the left of y and y (i.e., dl = l - y, where y = Ti,j, l = Ti,j-1),
and du is the difference between the VQ index directly above y and y (i.e., du = u - y, where y
= Ti,j, u = Ti-1,j,). The VQ indexes in the first row of T (i.e., y = T0,j where 1 ≤ j ≤ W/ws - 1),
however, have no upper neighboring VQ indexes to calculate du and so dl is used in this case.
That is, set l = T0,j-1 and u = l, the difference value du is then computed by du = u - y. Similarly,
the VQ indexes in the first column of T (i.e., y = Ti,0 where 1 ≤ i ≤ H/hs - 1) have no left
neighboring VQ indexes to compute dl and so du is used in this case. That is, set u = Ti-1,0 and
l = u, the difference value dl is then computed by dl = l - y. The calculations of the difference
values dl and du are shown in Fig. 1.

Fig. 1. The calculations of difference values dl and du

The next n secret bits s1s2...sn are then read from S and the values of dl and du are examined.

If either dl or du is equal to 0 (i.e., case 1: the VQ index to the left or above has the same value
as the current VQ index y), y is encoded by s1s2...sn||000 or s1s2...sn||001, respectively. The
encoded bit stream s1s2...sn||000 or s1s2...sn||001 is then appended to the code stream CS (i.e., CS
= CS||s1s2...sn||000 or CS = CS||s1s2...sn||001).

If du and dl are not equal to 0, only the value of dl is used to encode y. The absolute value of
dl, denoted as |dl|, ranges from 0 to N - 1 inclusive. To represent dl requires m bits, where 1 ≤ m

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2989

≤ log2N, the notation  denotes the ceiling function, and N is the codebook size (e.g., N =
256). As with previous schemes, a particular value of m is chosen as a threshold value.

In the case where |dl| cannot be represented in m bits (i.e., case 2: |dl| > 2m - 1), y is encoded
by s1s2...sn||01||y2, where y2 is the log2N-bit binary representation of y. The encoded bit stream
s1s2...sn||01||y2 is then appended to the code stream CS (i.e., CS = CS||s1s2...sn||01||y2).

Fig. 2. The flow chart of the proposed encoding and embedding scheme.

2990 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

If dl is greater than or equal to -(2m - 1) and less than 0 (i.e., case 3: -(2m - 1) ≤ dl < 0), y is
encoded by s1s2...sn||10||(-dl)2, where (-dl)2 is the m-bit binary representation of the absolute
value of dl. The encoded bit stream s1s2...sn||10||(-dl)2 is then added to the code stream CS (i.e.,
CS = CS||s1s2...sn||10||(-dl)2).

If dl is greater than 0 and less than or equal to 2m - 1 (i.e., case 4: 0 < dl ≤ 2m - 1), y is
encoded by s1s2...sn||11||dl2, where dl2 is the m-bit binary representation of dl. The encoded bit
stream s1s2...sn||11||dl2 is then sent to the code stream CS (i.e., CS = CS||s1s2...sn||11||dl2).

The above encoding and embedding process is repeated for the next VQ index in raster
scan order until all VQ indexes in the VQ index table T are processed. The proposed encoding
and embedding method is summarized in Table 1. The flowchart of the proposed encoding
and embedding scheme is shown in Fig. 2. The proposed encoding and embedding algorithm
is described next.

Table 1. Summary of the proposed encoding and embedding scheme
Secret bits Case 1 Case 2 Case 3 Case 4

s1s2...sn

Case 1.1: dl = 0 Case 1.2: du = 0 |dl| > 2m - 1 -(2m - 1) ≤ dl < 0 0 < dl ≤ 2m - 1
s1s2...sn||000 s1s2...sn||001 s1s2...sn||01||y2 s1s2...sn||10||(-dl)2 s1s2...sn||11||dl2

The encoding and embedding algorithm
Input: A grayscale cover image I sized H×W, a codebook CB sized N, a secret message S,

the preset values of m and n, where 1 ≤ m ≤ log2N and n = 1, 2, 3, or 4
Output: The binary code stream CS
Step 1: Compress I by using a VQ encoder to obtain the VQ index table T sized

(H/hs)×(W/ws), where hs×ws is the size of an image block used by the VQ encoder.
Step 2: Read the next VQ index y from the VQ index table T in raster scan order.
Step 3: If y is the top-left element of T (i.e., y = T0,0), then
Step 3.1: Read the next n secret bits s1s2...sn from the secret message S.
Step 3.2: Append y2||s1s2...sn to CS (i.e., CS = CS||y2||s1s2...sn),

where y2 is the log2N-bit binary representation of y and the notation || denotes the
concatenation operation.

Step 4: If y is not the top-left element of T (i.e., y ≠ T0,0), then
Step 4.1: If y is located in the first row of T except T0,0 (i.e., y = T0,j where 1 ≤ j < W/ws), then

Set l to be the left neighboring VQ index of y (i.e., l = T0,j-1) and u = l.
Step 4.2: If y is positioned in the first column of T except T0,0 (i.e., y = Ti,0 where

1 ≤ i < H/hs), then
Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,0) and l = u.

Step 4.3: If y is located from the second row and second column of T (i.e., y = Ti,j where
1 ≤ i < H/hs and 1 ≤ j < W/ws), then

Set l to be the left neighboring VQ index of y (i.e., l = Ti,j-1).
Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,j).

Step 5: Read the next n secret bits s1s2...sn from the secret message S.
Step 6: Compute the difference values dl = l - y and du = u - y.
Step 7: If dl = 0 or du = 0 (i.e., case 1), then
Step 7.1: If dl equals 0 (i.e., case 1.1), then encode y by s1s2...sn||000.

Append the bit stream s1s2...sn||000 to CS (i.e., CS = CS||s1s2...sn||000).
Step 7.2: If du is equal to 0 (i.e., case 1.2), then encode y by s1s2...sn||001.

Append the bit stream s1s2...sn||001 to CS (i.e., CS = CS||s1s2...sn||001).
Step 8: Else if |dl| > 2m - 1 (i.e., case 2), then encode y by s1s2...sn||01||y2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2991

Append the bit stream s1s2...sn||01||y2 to CS (i.e., CS = CS||s1s2...sn||01||y2).
Step 9: Else if -(2m - 1) ≤ dl < 0 (i.e., case 3), then encode y by s1s2...sn||10||(-dl)2,

where (-dl)2 is the m-bit binary representation of the absolute value of dl.
Append the bit stream s1s2...sn||10||(-dl)2 to CS (i.e., CS = CS||s1s2...sn||10||(-dl)2).

Step 10: Else (i.e., case 4: 0 < dl ≤ 2m - 1) encode y by s1s2...sn||11||dl2,
where dl2 is the m-bit binary representation of dl.
Append the bit stream s1s2...sn||11||dl2 to CS (i.e., CS = CS||s1s2...sn||11||dl2).

Step 11: Repeat steps 2 to 10 until all VQ indexes of the VQ index table T are processed.
Step 12: Output the binary code stream CS.

3.2 The Decoding and Extracting Phase
The decoding and extracting process is the inverse process of the encoding and embedding
process. At the receiving side, with the received code stream CS and N-sized codebook CB, the
decoder can extract the embedded secret message and restore the original VQ indices. The
flowchart of the proposed decoding and extracting scheme is shown in Fig. 3. The summary of
the proposed decoding and extracting algorithm is given below.

The decoding and extracting algorithm
Input: The binary code stream CS, the codebook CB sized N,

the preset values of m and n, where 1 ≤ m ≤ log2N and n = 1, 2, 3, or 4
Output: The extracted secret message S and the reconstructed cover image I’ sized H×W
Step 1: Let the extracted secret message S and the recovered VQ index table T be empty.
Step 2: If the currently decoded VQ index y is the top-left element of T (i.e., y is at the

position T0,0), then
Step 2.1: Read the next log2N bits from CS and convert them into the decimal value de.
Step 2.2: Recover the original VQ index by y = de.
Step 2.3: Read the next n bits c1c2...cn from the code stream CS.
Step 2.4: Extract the n secret bits by s1s2...sn = c1c2...cn.
Step 2.5: Update the extracted secret message by S = S||s1s2...sn.
Step 3: If the currently decoded VQ index y is not the top-left element of T (i.e., y is not at the

location T0,0), then
Step 3.1: If the currently decoded VQ index y is located in the first row of T except the

position T0,0 (i.e., y is at the position T0,j where 1 ≤ j < W/ws), then
Set l to be the left neighboring VQ index of y (i.e., l = Ti,j-1) and u = l.

Step 3.2: If the currently decoded VQ index y is positioned in the first column of T except the
position T0,0 (i.e., y is at the position Ti,0 where 1 ≤ i < H/hs), then

Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,j) and l = u.
Step 3.3: If the currently decoded VQ index y is located from the second row and second

column of T (i.e., y is located at Ti,j where 1 ≤ i < H/hs and 1 ≤ j < W/ws), then
Set l to be the left neighboring VQ index of y (i.e., l = Ti,j-1).
Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,j).

Step 4: Read the next n bits c1c2...cn from the code stream CS.
Step 5: Extract the n secret bits by s1s2...sn = c1c2...cn.

Update the extracted secret message by S = S||s1s2...sn.
Step 6: Read the next two bits c1c2 from the code stream CS.
Step 7: If c1c2 = 00 (i.e., case 1: dl = 0 or du = 0), then
Step 7.1: Read the next bit c3 from the code stream CS.
Step 7.2: If c3 = 0 (i.e., case 1.1: dl = 0), then recover the original VQ index by y = l.

2992 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

Step 7.3: Else (i.e., c3 = 1, case 1.2: du = 0), then restore the original VQ index by y = u.
Step 8: Else if c1c2 = 01 (i.e., case 2: |dl| > 2m - 1), then

Read the next log2N bits from CS and convert them into the decimal value de.
Reconstruct the original VQ index by y = de.

Step 9: Else (i.e., case 3: -(2m - 1) ≤ dl < 0 or case 4: 0 < dl ≤ 2m - 1)
Read the next m bits from CS and convert them into the decimal value dl.
If c1c2 = 10 (i.e., case 3: -(2m - 1) ≤ dl < 0), then set dl = -dl.
Recover the original VQ index by y = l - dl.

Step 10: Insert the restored VQ index y to the VQ index table T in raster scan order.
Step 11: Repeat steps 3 to 10 until all bits of the code stream CS are processed.
Step 12: Restore the cover image I’ sized H×W from the constructed VQ index table T sized

(H/hs)×(W/ws) by using the VQ decoder.

Fig. 3. The flowchart of the proposed decoding and extracting scheme.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2993

4. Experimental Results and Discussion
The proposed scheme was implemented by using Microsoft Visual C++ 2010 software
running on the Intel Core i7, 2.2 GHz CPU, and 6 GB RAM hardware platform. The binary
secret message S was randomly generated by using the rand() function. Seven grayscale
cover images all sized 512×512 were used to test the previous and proposed schemes and are
shown in Fig. 4.

Fig. 4. Grayscale cover images used in performance tests

Sorted codebooks of sizes N = 128, 256, 512, and 1024 consisting of 16-dimensional

codewords were used to generate the VQ index tables for each test image (i.e., k = hs×ws = 16).
The performances of the proposed method for the values of n = 1, 2, 3, and 4 (denoted as P1,
P2, P3, and P4, respectively) are compared to Chang et al.’s scheme [24], Wang and Lu’s
scheme [25], and Lee et al.’s scheme [26].

In order to evaluate the performance of the proposed scheme, four criteria, compression
rate measured in bit per pixel (bpp), embedding rate measured in bits per index (bpi),
embedding efficiency, and visual quality of reconstructed images were used. The compression
rate is defined by CR = ||CS|| / H×W (bpp), where ||CS|| is the length of the output code stream
CS and H×W represents the number of pixels in the original cover image. The embedding rate
is defined by ER = ||S|| / NI (bpi), where ||S|| is the total number of secret bits that can be
embedded into a VQ index table and NI is the number of indices in the VQ index table (i.e., NI
= (H/hs)×(W/ws)).

The embedding efficiency (EE) is the number of secret bits embedded when one bit of the
output code stream CS is transmitted. The embedding efficiency is defined by EE = ||S|| / ||CS||
= ER / (CR×hs×ws), where hs×ws is the size of an image block used by the VQ encoder.

4.1 Experiments on Selecting Appropriate Parameters m and z

The compression rate performance of Chang et al.’s scheme [24], Wang and Lu’s scheme [25],
and the proposed scheme is affected by the preset value of the parameter m that is used to
represent the difference value d in the binary representation. The performances with regard to

2994 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

the embedding rate and compression rate of Lee et al.’s scheme [26] depend on the
predetermined value of the parameter z that is used for the coarse sub-codebooks. The impact
of the preset values of the parameter m on the proposed scheme are presented in Tables 2-5.
and that of the parameter z on Lee et al.’s method are shown in Tables 6-9 in the appdenix.

Table 2. The effect of different values of m on compression rate of the proposed scheme
with n = 1, 2, 3, and 4 for the codebook size N = 128

m 1 2 3 4 5 6 7
a) n = 1
Lena 0.395 0.376 0.362 0.356 0.365 0.383 0.408
Peppers 0.388 0.373 0.356 0.351 0.359 0.377 0.401
Baboon 0.524 0.501 0.478 0.461 0.465 0.494 0.540
Boats 0.367 0.352 0.343 0.338 0.345 0.360 0.379
JetF16 0.358 0.343 0.337 0.334 0.340 0.352 0.370
Tiffany 0.292 0.281 0.282 0.288 0.297 0.307 0.318
GoldHill 0.429 0.410 0.387 0.378 0.390 0.416 0.448
Average CR 0.393 0.377 0.364 0.358 0.366 0.384 0.409
b) n = 2
Lena 0.458 0.439 0.424 0.418 0.427 0.446 0.470
Peppers 0.450 0.435 0.418 0.413 0.422 0.440 0.463
Baboon 0.586 0.563 0.541 0.524 0.527 0.557 0.603
Boats 0.430 0.414 0.406 0.400 0.407 0.422 0.442
JetF16 0.421 0.405 0.399 0.397 0.403 0.415 0.433
Tiffany 0.354 0.344 0.344 0.351 0.359 0.370 0.381
GoldHill 0.492 0.473 0.449 0.440 0.453 0.479 0.511
Average CR 0.456 0.439 0.426 0.420 0.428 0.447 0.472
c) n =3
Lena 0.520 0.501 0.487 0.481 0.490 0.508 0.533
Peppers 0.513 0.498 0.481 0.476 0.484 0.502 0.526
Baboon 0.649 0.626 0.603 0.586 0.590 0.619 0.665
Boats 0.492 0.477 0.468 0.463 0.470 0.485 0.504
JetF16 0.483 0.468 0.462 0.459 0.465 0.477 0.495
Tiffany 0.417 0.406 0.407 0.413 0.422 0.432 0.443
GoldHill 0.554 0.535 0.512 0.503 0.515 0.541 0.573
Average CR 0.518 0.502 0.489 0.483 0.491 0.509 0.534
d) n = 4
Lena 0.583 0.564 0.549 0.543 0.552 0.571 0.595
Peppers 0.575 0.560 0.543 0.538 0.547 0.565 0.588
Baboon 0.711 0.688 0.666 0.649 0.652 0.682 0.728
Boats 0.555 0.539 0.531 0.525 0.532 0.547 0.567
JetF16 0.546 0.530 0.524 0.522 0.528 0.540 0.558
Tiffany 0.479 0.469 0.469 0.476 0.484 0.495 0.506
GoldHill 0.617 0.598 0.574 0.565 0.578 0.604 0.636
Average CR 0.581 0.564 0.551 0.545 0.553 0.572 0.597

Table 3. The effect of different values of m on compression rate of the proposed scheme

with n = 1, 2, 3, and 4 for the codebook size N = 256
m 1 2 3 4 5 6 7 8

a) n = 1
Lena 0.501 0.476 0.444 0.426 0.428 0.446 0.476 0.512
Peppers 0.488 0.463 0.434 0.414 0.416 0.436 0.464 0.498

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2995

Baboon 0.623 0.603 0.572 0.544 0.530 0.541 0.581 0.636
Boats 0.440 0.421 0.395 0.386 0.389 0.403 0.426 0.453
JetF16 0.443 0.407 0.392 0.387 0.392 0.407 0.430 0.459
Tiffany 0.388 0.354 0.333 0.333 0.346 0.366 0.388 0.411
GoldHill 0.537 0.513 0.478 0.453 0.448 0.471 0.507 0.550
Average CR 0.489 0.462 0.435 0.420 0.421 0.439 0.467 0.503
b) n = 2
Lena 0.563 0.539 0.506 0.488 0.491 0.509 0.539 0.575
Peppers 0.551 0.525 0.496 0.477 0.479 0.498 0.527 0.561
Baboon 0.685 0.666 0.634 0.607 0.592 0.603 0.644 0.698
Boats 0.502 0.484 0.457 0.449 0.451 0.466 0.488 0.516
JetF16 0.506 0.469 0.454 0.450 0.454 0.470 0.493 0.521
Tiffany 0.450 0.417 0.396 0.396 0.409 0.429 0.451 0.474
GoldHill 0.599 0.575 0.541 0.515 0.511 0.533 0.570 0.612
Average CR 0.551 0.525 0.498 0.483 0.484 0.501 0.530 0.565
c) n = 3
Lena 0.626 0.601 0.569 0.551 0.553 0.571 0.601 0.637
Peppers 0.613 0.588 0.559 0.539 0.541 0.561 0.589 0.623
Baboon 0.748 0.728 0.697 0.669 0.655 0.666 0.706 0.761
Boats 0.565 0.546 0.520 0.511 0.514 0.528 0.551 0.578
JetF16 0.568 0.532 0.517 0.512 0.517 0.532 0.555 0.584
Tiffany 0.513 0.479 0.458 0.458 0.471 0.491 0.513 0.536
GoldHill 0.662 0.638 0.603 0.578 0.573 0.596 0.632 0.675
Average CR 0.614 0.587 0.560 0.545 0.546 0.564 0.592 0.628
d) n = 4
Lena 0.688 0.664 0.631 0.613 0.616 0.634 0.664 0.700
Peppers 0.676 0.650 0.621 0.602 0.604 0.623 0.652 0.686
Baboon 0.810 0.791 0.759 0.732 0.717 0.728 0.769 0.823
Boats 0.627 0.609 0.582 0.574 0.576 0.591 0.613 0.641
JetF16 0.631 0.594 0.579 0.575 0.579 0.595 0.618 0.646
Tiffany 0.575 0.542 0.521 0.521 0.534 0.554 0.576 0.599
GoldHill 0.724 0.700 0.666 0.640 0.636 0.658 0.695 0.737
Average CR 0.676 0.650 0.623 0.608 0.609 0.626 0.655 0.690

Table 4. The effect of different values of m on compression rate of the proposed scheme

with n = 1, 2, 3, and 4 for the codebook size N = 512
m 1 2 3 4 5 6 7 8

a) n = 1
Lena 0.601 0.582 0.544 0.512 0.497 0.506 0.531 0.569
Peppers 0.589 0.569 0.538 0.500 0.484 0.491 0.517 0.554
Baboon 0.706 0.692 0.670 0.639 0.608 0.591 0.607 0.656
Boats 0.526 0.505 0.475 0.453 0.446 0.452 0.473 0.502
JetF16 0.567 0.535 0.487 0.468 0.470 0.484 0.510 0.545
Tiffany 0.468 0.442 0.416 0.398 0.397 0.410 0.435 0.465
GoldHill 0.623 0.602 0.572 0.536 0.511 0.515 0.544 0.587
Average CR 0.583 0.561 0.529 0.501 0.488 0.493 0.517 0.554
b) n = 2
Lena 0.664 0.644 0.606 0.574 0.559 0.568 0.593 0.631
Peppers 0.652 0.631 0.600 0.562 0.546 0.554 0.580 0.617
Baboon 0.768 0.754 0.732 0.701 0.670 0.654 0.670 0.718
Boats 0.588 0.567 0.537 0.515 0.508 0.515 0.535 0.565

2996 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

JetF16 0.629 0.597 0.550 0.531 0.533 0.547 0.572 0.608
Tiffany 0.530 0.505 0.478 0.460 0.459 0.472 0.498 0.528
GoldHill 0.686 0.665 0.635 0.599 0.573 0.577 0.606 0.649
Average CR 0.645 0.623 0.591 0.563 0.550 0.555 0.579 0.617
c) n = 3
Lena 0.726 0.707 0.669 0.637 0.622 0.631 0.656 0.694
Peppers 0.714 0.694 0.663 0.625 0.609 0.616 0.642 0.679
Baboon 0.831 0.817 0.795 0.764 0.733 0.716 0.732 0.781
Boats 0.651 0.630 0.600 0.578 0.571 0.577 0.598 0.627
JetF16 0.692 0.660 0.612 0.593 0.595 0.609 0.635 0.670
Tiffany 0.593 0.567 0.541 0.523 0.522 0.535 0.560 0.590
GoldHill 0.748 0.727 0.697 0.661 0.636 0.640 0.669 0.712
Average CR 0.708 0.686 0.654 0.626 0.613 0.618 0.642 0.679
d) n = 4
Lena 0.789 0.769 0.731 0.699 0.684 0.693 0.718 0.756
Peppers 0.777 0.756 0.725 0.687 0.671 0.679 0.705 0.742
Baboon 0.893 0.879 0.857 0.826 0.795 0.779 0.795 0.843
Boats 0.713 0.692 0.662 0.640 0.633 0.640 0.660 0.690
JetF16 0.754 0.722 0.675 0.656 0.658 0.672 0.697 0.733
Tiffany 0.655 0.630 0.603 0.585 0.584 0.597 0.623 0.653
GoldHill 0.811 0.790 0.760 0.724 0.698 0.702 0.731 0.774
Average CR 0.770 0.748 0.716 0.688 0.675 0.680 0.704 0.742

Table 5. The effect of different values of m on compression rate of the proposed scheme

with n = 1, 2, 3, and 4 for the codebook size N = 1024
m 1 2 3 4 5 6 7 8 9

a) n = 1
Lena 0.698 0.682 0.655 0.620 0.585 0.573 0.583 0.612 0.655
Peppers 0.673 0.659 0.632 0.599 0.562 0.550 0.562 0.594 0.635
Baboon 0.780 0.771 0.756 0.730 0.700 0.668 0.656 0.676 0.726
Boats 0.612 0.588 0.551 0.517 0.507 0.507 0.520 0.546 0.681
JetF16 0.638 0.605 0.553 0.520 0.513 0.520 0.539 0.570 0.608
Tiffany 0.553 0.515 0.475 0.445 0.438 0.446 0.469 0.502 0.538
GoldHill 0.707 0.693 0.671 0.638 0.599 0.576 0.583 0.616 0.663
Average CR 0.666 0.645 0.613 0.581 0.558 0.549 0.559 0.588 0.644
b) n = 2
Lena 0.760 0.744 0.718 0.682 0.647 0.635 0.645 0.675 0.718
Peppers 0.736 0.721 0.695 0.661 0.624 0.613 0.625 0.656 0.697
Baboon 0.843 0.834 0.818 0.793 0.762 0.730 0.718 0.738 0.789
Boats 0.674 0.651 0.613 0.580 0.570 0.569 0.582 0.608 0.643
JetF16 0.701 0.668 0.615 0.582 0.575 0.583 0.601 0.633 0.671
Tiffany 0.615 0.577 0.538 0.508 0.500 0.509 0.532 0.565 0.600
GoldHill 0.769 0.755 0.733 0.700 0.661 0.638 0.646 0.679 0.726
Average CR 0.728 0.707 0.676 0.644 0.620 0.611 0.621 0.651 0.692
c) n = 3
Lena 0.823 0.807 0.780 0.745 0.710 0.698 0.708 0.737 0.780
Peppers 0.798 0.784 0.757 0.724 0.687 0.675 0.687 0.719 0.760
Baboon 0.905 0.896 0.881 0.855 0.825 0.793 0.781 0.801 0.851
Boats 0.737 0.713 0.676 0.642 0.632 0.632 0.645 0.671 0.706
JetF16 0.763 0.730 0.678 0.645 0.638 0.645 0.664 0.695 0.733
Tiffany 0.678 0.640 0.600 0.570 0.563 0.571 0.594 0.627 0.663

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2997

GoldHill 0.832 0.818 0.796 0.763 0.724 0.701 0.708 0.741 0.788
Average CR 0.791 0.770 0.738 0.706 0.683 0.674 0.684 0.713 0.754
d) n = 4
Lena 0.885 0.869 0.843 0.807 0.772 0.760 0.770 0.800 0.843
Peppers 0.861 0.846 0.820 0.786 0.749 0.738 0.750 0.781 0.822
Baboon 0.968 0.959 0.943 0.918 0.887 0.855 0.843 0.863 0.914
Boats 0.799 0.776 0.738 0.705 0.695 0.694 0.707 0.733 0.768
JetF16 0.826 0.793 0.740 0.707 0.700 0.708 0.726 0.758 0.796
Tiffany 0.740 0.702 0.663 0.633 0.625 0.634 0.657 0.690 0.725
GoldHill 0.894 0.880 0.858 0.825 0.786 0.763 0.771 0.804 0.851
Average CR 0.853 0.832 0.801 0.769 0.745 0.736 0.746 0.776 0.817

It can be seen from Tables 2-9 that to obtain the optimal (i.e., smallest value) compression

rate with the codebooks of sizes N = 128, 256, 512, and 1024, the selected values of the
parameter m for the proposed scheme are m = 4, 4, 5 and 6, respectively. For Lee et al.’s
scheme [26], the parameter z is chosen so that the scheme achieves its maximum embedding
rate. Thus, the suggested values of the parameter z for this method are z = 2, 4, 8 and 16,
respectively.

4.2 Comparing the Proposed Scheme with Previous Schemes

In this section, we compare the performance results of the proposed scheme with the schemes
proposed by Chang et al. [24], Wang and Lu [25] with paths 1 and 2 as well as Lee et al. [26].
The comparative results among the simulated methods with regard to average embedding rate
ER, compression rate CR, and embedding efficiency EE for the codebooks of sizes N = 128,
256, 512 and 1024 are shown in Table 10. It is noted that, the codebook sizes N = 128, 256,
512, and 1024, the selected values of the parameter m for Chang et al.’s scheme [24] are m = 1,
4, 6, and 7, respectively. The suitable values of the parameter m for Wang and Lu’s scheme
[25] with the path 1 are m = 2, 3, 5, and 6, respectively. The proper values of the parameter m
for Wang and Lu’s scheme [25] with the path 2 are m = 2, 4, 5, and 6, respectively.

Table 10. Results of average ER (bpi), CR (bpp), and EE of simulated methods with their selected
values of m and z for codebook sizes N = 128, 256, 512, and 1024 and test images in Fig. 4

Methods Factors 128 256 512 1024
Chang et al. [24] ER 0.984 0.984 0.984 0.984
 CR 0.400 0.510 0.583 0.649
 EE 0.154 0.121 0.106 0.095
 m = 1 m = 4 m = 6 m = 7
Wang and Lu [25] path 1 ER 1.953 1.953 1.953 1.953
 CR 0.504 0.573 0.638 0.696
 EE 0.242 0.213 0.191 0.175
 m = 2 m = 3 m = 5 m = 6
Wang and Lu [25] path 2 ER 2.884 2.884 2.884 2.884
 CR 0.572 0.641 0.706 0.765
 EE 0.315 0.281 0.255 0.236
 m = 2 m = 4 m = 5 m = 6
Lee et al. [26] ER 3.128 2.952 2.740 2.679
 CR 0.475 0.546 0.612 0.673
 EE 0.412 0.338 0.280 0.249
 z = 2 z = 4 z = 8 z = 16

2998 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

Proposed with n = 1 (P1) ER 1.000 1.000 1.000 1.000
 CR 0.358 0.420 0.488 0.549
 EE 0.175 0.149 0.128 0.114
 m = 4 m = 4 m = 5 m = 6
Proposed with n = 2 (P2) ER 2.000 2.000 2.000 2.000
 CR 0.420 0.483 0.550 0.611
 EE 0.298 0.259 0.227 0.205
 m = 4 m = 4 m = 5 m = 6
Proposed with n = 3 (P3) ER 3.000 3.000 3.000 3.000
 CR 0.483 0.545 0.613 0.674
 EE 0.388 0.344 0.306 0.278
 m = 4 m = 4 m = 5 m = 6
Proposed with n = 4 (P4) ER 4.000 4.000 4.000 4.000
 CR 0.545 0.608 0.675 0.736
 EE 0.459 0.411 0.370 0.340
 m = 4 m = 4 m = 5 m = 6

While both Chang et al.’s scheme [24] and the proposed scheme with n = 1 produce

embedding rates near 1 bpi, the method P1 achieves a true 1 bpi while Chang et al.’s scheme
obtains 0.984 bpi. Chang et al.’s scheme does not achieve 1 bpi as it uses the first row and first
column as a seed area and does not embed secret data in this area. Additionally, P1 achieves
the embedding rate of 1 bpi with significantly lower compression rates than Chang et al.’s
scheme across all codebook sizes tested as can be seen in Table 10. The reason for Chang et
al.’s high compression rates is due to the fact that this scheme uses m padding bits 0’s when the
difference value d = 0 or |d| > 2m - 1. With respect to the embedding efficiency, Table 10
demonstrates that the embedding efficiencies of the scheme P1 are higher than those of Chang
et al.’s scheme [24] regardless of the codebook sizes. This confirms the superiority of the
scheme P1 over Chang et al.’s scheme.

A similar trend can be seen from Table 10 when comparing Wang and Lu’s scheme [25]
with the path 1 which produces near 2 bpi to the scheme P2. Wang and Lu’s method with the
path 1 produces the embedding rate of 1.953 bpi while P2 produces a true 2 bpi. As can be seen
from Table 10, the method P2 achieves a slightly higher embedding rate with much smaller
compression rates regardless of the codebook sizes. The higher compression rates of Wang
and Lu’s scheme [25] with the path 1 are also due to the use of m padding bits 0’s in the case
where the difference value d = 0. For the embedding efficiency comparison, Table 10
indicates that the embedding efficiencies obtained by Wang and Lu’s method [25] with the
path 1 are 0.242, 0.213, 0.191, and 0.175 whereas those attained by the method P2 are 0.298,
0.259, 0.227, and 0.205. This demonstrates that the scheme P2 surpasses Wang and Lu’s
scheme with the path 1.

Both Wang and Lu’s scheme [25] with the path 2 and Lee et al.’s scheme [26] produce
embedding rates around 3 bpi and are comparable with the scheme P3. Table 10 shows that
Wang and Lu’s scheme and P3 both have the constant embedding rates of 2.884 bpi and 3 bpi,
respectively, regardless of the codebook sizes. Lee et al.’s method, however, has the variable
embedding rates of 3.128, 2.952, 2.740, and 2.679 bpi for the codebooks of sizes 128, 256, 512,
and 1024, respectively.

From Table 10 we can see that Wang and Lu’s scheme [25] with the path 2 has a lower
embedding rate than the scheme P3. This is due to the fact that their scheme requires a large
seed area (i.e., first two rows, first two columns, and the rightmost column of the VQ index

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2999

table) whereas P3 truly embeds secret data into every VQ index. Wang and Lu’s scheme with
the path 2 also has much higher compression rates across all codebook sizes. This is because
the utilization of the neighboring VQ indices in computing the difference value d by Wang and
Lu’s scheme leads to a large value of d. In addition, m padding bits 0’s are used by this scheme
when the difference value d = 0. In terms of the embedding efficiency, it can be observed from
Table 10 that the embedding efficiencies achieved by Wang and Lu’s method [25] with the
path 2 are 0.315, 0.281, 0.255, and 0.236, those gained by Lee et al.’s [26] scheme are 0.412,
0.338, 0.280, and 0.249, and those obtained by P3 are 0.388, 0.344, 0.306, and 0.278. Thus, it
can be deduced that the embedding efficiency of the scheme P3 is superior to that of Wang and
Lu’s method [25] with the path 2. We can see from Table 10 that, for the 128 sized codebook,
Lee et al.’s method has the EE value of 0.412 which is better than the P3’s result of 0.388 for
the same codebook size. This is supported by their slightly higher embedding rate of 3.128 bpi
versus 3 bpi for P3 and a better compression rate of 0.475 bpp versus 0.483 bpp for P3. For the
three remaining codebooks, however, the scheme P3 has the better EE values of 0.344, 0.306,
and 0.278 whereas the EE values of Lee et al.’s method are 0.338, 0.280, and 0.249. This is
due to the fact that Lee et al.’s scheme embeds less secret data when the codebook size
increases whereas our scheme remains the constant embedding rate regardless of the codebook
size. Additionally, with the exception of the 128 sized codebook, the compression rate of our
method stays within 0.001 of theirs. Thus, it can be concluded that the performance of Lee et
al.’s method is better than that of the scheme P3 for the 128 sized codebook and the scheme P3
has a better performance than Lee et al.’s scheme for the codebooks sized 256, 512, and 1024.

Table 11. Comparative results of Lee et al.’s scheme [26] and P3 for smooth image Tiffany
and complex image Baboon

a) Tiffany image
Methods Factors 128 256 512 1024

Lee et al. [26] ER 4.345 4.281 4.186 4.275
 CR 0.444 0.515 0.585 0.642
 EE 0.612 0.520 0.447 0.416
 z = 2 z = 4 z = 8 z = 16
Proposed with n = 3 ER 3 3 3 3
 CR 0.413 0.458 0.522 0.571
 EE 0.454 0.409 0.359 0.328
 m = 4 m = 4 m = 5 m = 6
b) Baboon image
Lee et al. [26] ER 1.447 1.125 0.992 0.942
 CR 0.514 0.584 0.648 0.709
 EE 0.176 0.120 0.096 0.083
 z = 2 z = 4 z = 8 z = 16
Proposed with n = 3 ER 3 3 3 3
 CR 0.586 0.669 0.733 0.793
 EE 0.320 0.280 0.256 0.236
 m = 4 m = 4 m = 5 m = 6

Lee et al.’s method [26] has an excellent performance in terms of the embedding rate,

compression rate, and embedding efficiency for smooth images such as the Tiffany image, as
shown in Table 11. For the Tiffany image, their method is capable of attaining the embedding
rates of 4.345, 4.281, 4.186, and 4.275 bpi at the compression rates of 0.444, 0.515, 0.585, and
0.642 bpp for the codebooks sized 128, 256, 512, and 1024, respectively. Thus, it is clear that

3000 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

Lee et al.’s method surpasses the scheme P3 for smooth images. As can be seen from Table 11,
however, Lee et al.’s method performs poorly when applied to complex images (e.g., Baboon
image) and this effect worsens as the codebook size increases. We can clearly see this from the
results of the Baboon image. Thus, it can be said that the scheme P3 is superior to Lee et al.’s
method for complex images.

None of the previous schemes [24-26] achieves average embedding rates around 4 bpi.
From Table 10, we can see that, for the 128 sized codebook, the scheme P4 achieves the
embedding rate of 4 bpi at the average compression rate of 0.545 bpp that is within an
acceptable range. Even though for the codebook of size 256, the scheme P4 has a higher
compression rate of 0.608 bpp for the embedding rate of 4 bpi. Thus, we believe that this is still
viable. Table 10 further shows that there is a jump in the compression rate for the 512 and
1024 sized codebooks, making use of P4 at these codebook sizes less alluring.

The visual quality of the reconstructed images was evaluated by using peak signal-to-noise
ratio (PSNR) which is defined as follows.

MSE
PSNR

2

10
255log10×= (dB), where 2

1

0

1

0

)),(),((1 ∑∑
−

=

−

=

′−
×

=
H

i

W

j
jiIjiI

WH
MSE .

The MSE (mean square error) is the difference between the original cover image I sized
H×W and the reconstructed image I’ sized H×W, and I(i, j) and I’(i, j) are the values of the
pixels located at the ith row and jth column of I and I’, respectively. Because the simulated
schemes reversibly conceal secret bits into VQ indices in a VQ index table, the original VQ
indices can be completely recovered. Therefore, the PSNR values of the simulated methods are
the same as those of the VQ compression method. Fig. 5 shows the PSNR values of the
simulated schemes for the codebook size N = 256.

Fig. 5. Visual quality results of restored cover images of simulated schemes.

5. Conclusion
In this paper, we propose a novel lossless data hiding method for VQ indices based on joint
neighboring coding. The proposed method embeds n secret bits into one VQ index, where n =
1, 2, 3, 4. The proposed approach can obtain the embedding rates of 1, 2, 3, and 4 bpi. Using
the embedding efficiency EE as a fair comparison factor among the simulated methods, our
method surpasses the three previous works, namely Chang et al.’s [24] and Wang and Lu’s
[25] schemes for all codebook sizes except Lee et al.’s method [26] for the 128 sized codebook.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3001

Thus, we can conclude that our method is a viable method for use in a data hiding application
such as digital libaries or secret communications.

Appendix
Table 6. The effect of different values of z on embedding rate and compression rate of Lee et al.’s

scheme [26] for the codebook size N = 128
Images z 1 2 4 8
Lena ER 3.074 3.142 3.086 2.899

 CR 0.483 0.475 0.467 0.456
Peppers ER 3.155 3.220 3.157 2.992

 CR 0.481 0.473 0.467 0.455
Baboon ER 1.364 1.447 1.387 1.131

 CR 0.525 0.514 0.502 0.484
Boats ER 3.423 3.489 3.428 3.276

 CR 0.474 0.467 0.462 0.455
JetF16 ER 3.543 3.609 3.538 3.397

 CR 0.472 0.464 0.460 0.453
Tiffany ER 4.340 4.345 4.239 4.090

 CR 0.450 0.444 0.442 0.440
GoldHill ER 2.597 2.644 2.567 2.354

 CR 0.494 0.486 0.477 0.460
Average ER 3.071 3.128 3.057 2.877
Average CR 0.483 0.475 0.468 0.458

Table 7. The effect of different values of z on embedding rate and compression rate of Lee et al.’s

scheme [26] for the codebook size N = 256
Images z 1 2 4 8 16
Lena ER 2.604 2.718 2.841 2.757 2.405

 CR 0.569 0.562 0.548 0.531 0.517
Peppers ER 2.764 2.905 2.987 2.932 2.593

 CR 0.566 0.558 0.546 0.529 0.516
Baboon ER 0.934 1.026 1.125 1.074 0.711

 CR 0.603 0.597 0.584 0.565 0.542
Boats ER 3.419 3.482 3.557 3.476 3.214

 CR 0.552 0.547 0.537 0.525 0.516
JetF16 ER 3.361 3.543 3.564 3.423 3.139

 CR 0.553 0.543 0.533 0.524 0.515
Tiffany ER 4.129 4.297 4.281 4.099 3.787

 CR 0.535 0.525 0.515 0.507 0.503
GoldHill ER 2.111 2.221 2.306 2.251 1.889

 CR 0.579 0.572 0.560 0.540 0.521
Average ER 2.760 2.885 2.952 2.859 2.534
Average CR 0.565 0.558 0.546 0.532 0.519

Table 8. The effect of different values of z on embedding rate and compression rate of Lee et al.’s

scheme [26] for the codebook size N = 512
Images z 1 2 4 8 16 32
Lena ER 2.158 2.303 2.457 2.592 2.393 1.913

 CR 0.647 0.641 0.631 0.611 0.593 0.580
Peppers ER 2.306 2.436 2.601 2.739 2.597 2.145

3002 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

 CR 0.645 0.640 0.630 0.612 0.593 0.578
Baboon ER 0.664 0.766 0.884 0.992 0.919 0.508

 CR 0.675 0.670 0.663 0.648 0.627 0.601
Boats ER 3.166 3.267 3.414 3.480 3.330 2.974

 CR 0.630 0.625 0.616 0.603 0.590 0.579
JetF16 ER 2.633 2.784 2.984 3.012 2.749 2.290

 CR 0.638 0.631 0.618 0.601 0.589 0.579
Tiffany ER 4.039 4.093 4.224 4.186 3.957 3.559

 CR 0.612 0.607 0.596 0.585 0.574 0.567
GoldHill ER 1.815 1.949 2.085 2.177 2.067 1.619

 CR 0.654 0.648 0.639 0.624 0.603 0.581
Average ER 2.397 2.514 2.664 2.740 2.573 2.144
Average CR 0.643 0.637 0.628 0.612 0.596 0.581

Table 9. The effect of different values of z on embedding rate and compression rate of Lee et al.’s

scheme [26] for the codebook size N = 1024
Images z 1 2 4 8 16 32 64
Lena ER 1.691 1.819 2.033 2.226 2.309 2.078 1.528

 CR 0.723 0.719 0.710 0.697 0.677 0.657 0.643
Peppers ER 2.023 2.144 2.333 2.510 2.586 2.384 1.852

 CR 0.717 0.714 0.706 0.694 0.675 0.655 0.641
Baboon ER 0.501 0.579 0.694 0.834 0.942 0.833 0.386

 CR 0.742 0.739 0.734 0.725 0.709 0.688 0.662
Boats ER 2.881 3.035 3.231 3.445 3.441 3.167 2.721

 CR 0.704 0.700 0.692 0.677 0.662 0.652 0.641
JetF16 ER 2.521 2.761 3.102 3.269 3.156 2.802 2.277

 CR 0.709 0.702 0.689 0.673 0.660 0.649 0.639
Tiffany ER 3.795 4.076 4.325 4.403 4.275 3.904 3.397

 CR 0.689 0.680 0.668 0.655 0.642 0.633 0.628
GoldHill ER 1.538 1.644 1.780 1.948 2.041 1.906 1.389

 CR 0.725 0.722 0.716 0.705 0.688 0.664 0.642
Average ER 2.136 2.294 2.500 2.662 2.679 2.439 1.936
Average CR 0.716 0.711 0.702 0.689 0.673 0.657 0.642

References
[1] R.M. Davis, “The data encryption standard in perspective,” IEEE Communications Magazine, vol.

16, no. 6, pp. 5-9, 1978. Article (CrossRef Link)
[2] M.A. Wright, “The advanced encryption standard,” Network Security 2001, vol. 10, pp. 11-13,

2001. Article (CrossRef Link)
[3] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key

cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120-126, 1978.
Article (CrossRef Link)

[4] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital watermarking and steganography,
2nd Edition, Morgan Kauffman, 2007. Article (CrossRef Link)

[5] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM Systems
Journal, vol. 35, no. 3-4, pp. 313-336, 1996. Article (CrossRef Link)

[6] F.A.P. Petitcolas, R.J. Anderson, and M.G. Kuhn, “Information hiding - a survey,” in Proc. of
IEEE Special Issue on Protection of Multimedia Content, vol. 87, no. 7, pp. 1062-1078, 1999.
Article (CrossRef Link)

[7] Y. Hu, H. Lee, and J. Li, “DE-based reversible data hiding with improved overflow location map,”

http://dx.doi.org/10.1109/MCOM.1978.1089771
http://dx.doi.org/10.1016/S1353-4858%2801%2901018-2
http://dx.doi.org/10.1145/359340.359342
http://dl.acm.org/citation.cfm?id=1564551
http://dx.doi.org/10.1147/sj.353.0313
http://dx.doi.org/10.1109/5.771065

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 3003

IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 2, pp. 250-260,
2009. Article (CrossRef Link)

[8] F. Peng, X. Li, and B. Yang, “Improved PVO-based reversible data hiding,” Digital Signal
Processing, vol. 25, pp. 255-265, 2014. Article (CrossRef Link)

[9] D. Coltuc, “Low distortion transform for reversible watermarking,” IEEE Transactions on Image
Processing, vol. 21, no. 1, pp. 412-417, 2012. Article (CrossRef Link)

[10] C.H. Yang, C.Y. Weng, S.J. Wang, and H.M. Sun, “Adaptive data hiding in edge areas of images
with spatial LSB domain systems,” IEEE Transactions on Information Forensics and Security, vol.
3, no. 3, pp. 488-497, 2008. Article (CrossRef Link)

[11] W. Hong and T.S. Chen, “A novel data embedding method using adaptive pixel pair matching,”
IEEE Transactions on Information Forensics and Security, vol. 7, no. 1, pp. 176-184, 2012.
Article (CrossRef Link)

[12] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 8, pp. 831-841, 2003. Article (CrossRef Link)

[13] A.M. Alattar, “Reversible watermark using the difference expansion of a generalized integer
transform,” IEEE Transactions on Image Processing, vol. 13, no. 8, pp. 1147-1156, 2004.
Article (CrossRef Link)

[14] D.M. Thodi and J. J. Rodriguez, “Expansion embedding techniques for reversible watermarking,”
IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 721-730, 2007.
Article (CrossRef Link)

[15] X. Zhang, S. Wang, Z. Qian, and G. Feng, “Reversible fragile watermarking for locating tampered
blocks in JPEG images,” Signal Processing, vol. 90, no. 12, pp. 3026-3036, 2010.
Article (CrossRef Link)

[16] C.C. Chang, P.Y. Pai, C.M. Yeh, and Y.K Chan, “A high payload frequency-based reversible
image hiding method,” Information Sciences, vol. 180, no. 11, pp. 2286-2298, 2010.
Article (CrossRef Link)

[17] J.S. Pan, M.T. Sung, H.C. Huang, and B.Y. Liao, “Robust VQ-based digital watermarking for the
memoryless binary symmetric channel,” IEICE Transactions on Fundamentals, vol. E-87A, no. 7,
pp. 1839-1841, 2004. Article (CrossRef Link)

[18] C.H. Yang and Y.C. Lin, “Reversible data hiding of a VQ index table based on referred counts,”
Journal of Visual Communication and Image Representation, vol. 20, no. 6, pp. 399-407, 2009.
Article (CrossRef Link)

[19] C.C Chang, T.D. Kieu, and Y.C Chou, Reversible information hiding for VQ indices based on
locally adaptive coding,” Journal of Visual Communication and Image Representation, vol. 20, no.
1, pp. 57-64, 2009. Article (CrossRef Link)

[20] C.H. Yang and Y.C. Lin, “Fractal curves to improve the reversible data embedding for VQ-indexes
based on locally adaptive coding,” Journal of Visual Communication and Image Representation,
vol. 21, no. 4, pp. 334-342, 2010. Article (CrossRef Link)

[21] C.C. Chang, T.S. Nguyen, and C.C Lin, “A reversible data hiding for VQ indices using locally
adaptive coding,” Journal of Visual Communication and Image Representation, vol. 22, no. 7, pp.
664-672, 2011. Article (CrossRef Link)

[22] T.D. Kieu, A. Rudder, and W. Goodridge, “A reversible steganographic scheme for VQ indices
based on locally adaptive coding,” Journal of Visual Communication and Image Representation,
vol. 25, no. 6, pp. 1378-1386, 2014. Article (CrossRef Link)

[23] R.M. Gray, “Vector quantization,” IEEE ASSP Magazine, vol. 1, no. 2, pp. 4-29, 1984.
Article (CrossRef Link)

[24] C.C. Chang, T.D. Kieu, and W.C. Wu, “A lossless data embedding technique by joint neighboring
coding,” Pattern Recognition, vol. 42, no. 7, pp. 1597-1603, 2009. Article (CrossRef Link)

[25] J.X. Wang and Z.M. Lu, “A path optional lossless data hiding scheme based on VQ joint
neighboring coding,” Information Sciences, vol. 179, no. 19, pp. 3332-3348, 2009.
Article (CrossRef Link)

[26] J.D. Lee, Y.H. Chiou, and J.M. Guo, “Lossless data hiding for VQ indices based on neighboring
correlation,” Information Sciences, vol. 221, pp. 419-438, 2013. Article (CrossRef Link)

http://dx.doi.org/10.1109/TCSVT.2008.2009252
http://dx.doi.org/10.1016/j.dsp.2013.11.002
http://dx.doi.org/10.1109/TIP.2011.2162424
http://dx.doi.org/10.1109/TIFS.2008.926097
http://dx.doi.org/10.1109/TIFS.2011.2155062
http://dx.doi.org/doi:10.1109/TCSVT.2003.815962
http://dx.doi.org/10.1109/TIP.2004.828418
http://dx.doi.org/10.1109/TIP.2006.891046
http://dx.doi.org/10.1016/j.sigpro.2010.04.027
http://dx.doi.org/10.1016/j.ins.2010.01.034
http://search.ieice.org/bin/summary.php?id=e87-a_7_1839&category=A&year=2004&lang=E&abst=
http://dx.doi.org/10.1016/j.jvcir.2009.04.001
http://dx.doi.org/10.1016/j.jvcir.2008.08.005
http://dx.doi.org/10.1016/j.jvcir.2010.02.008
http://dx.doi.org/10.1016/j.jvcir.2011.06.005
http://dx.doi.org/10.1016/j.jvcir.2014.06.001
http://dx.doi.org/10.1109/MASSP.1984.1162229
http://dx.doi.org/10.1016/j.patcog.2008.11.040
http://dx.doi.org/10.1016/j.ins.2009.05.021
http://dx.doi.org/10.1016/j.ins.2012.09.020

3004 Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding

[27] T.D. Kieu and S. Ramroach, “A reversible steganographic scheme for VQ indices based on joint
neighboring coding,” Expert Systems with Applications, vol. 42, no. 2, pp. 713-722, 2015.
Article (CrossRef Link)

[28] Y. Linde, A. Buzo, and R.M. Gray, “An algorithm for vector quantizer design,” IEEE Transactions
on Communications, vol. 28, no. 1, pp. 84-95, 1980. Article (CrossRef Link)

Andrew Rudder received the B.S. degree in Computer Science in 2003 and M.S. degree in
Computer Science in 2006 from The University of the West Indies, St. Augustine, Trinidad
and Tobago. Currently, he is a Ph.D. candidate in Computer Science at The University of the
West Indies, St. Augustine, Trinidad and Tobago. Since 2007, he has been with the
Department of Computing and Information Technology, Faculty of Science and Technology,
The University of the West Indies, St. Augustine, Trinidad and Tobago, where he is currently
an assistant Lecturer. His research interests include information hiding, data compression, and
image processing.

The Duc Kieu received the B.S. degree in Mathematics from the University of Pedagogy,
Vietnam, in 1995, the B.S. degree in Information Technology from the University of Natural
Sciences, Vietnam, in 1999, the M.S. degree in Computer Science from Latrobe University,
Australia, in 2005, and the Ph.D. degree in Computer Science from Feng Chia University,
Taiwan, in 2009. Since 2010, he has been with the Department of Computing and Information
Technology, Faculty of Science and Technology, The University of the West Indies, St.
Augustine, Trinidad and Tobago, where he is currently a Lecturer. His research interests
include information hiding, data compression, and image processing.

http://dx.doi.org/10.1016/j.eswa.2014.09.001
http://dx.doi.org/10.1109/TCOM.1980.1094577

