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Abstract 
 

Designing a new reversible data hiding technique with a high embedding rate and a low 
compression rate for vector quantization (VQ) compressed images is encouraged. This paper 
proposes a novel lossless data hiding scheme for VQ-compressed images based on the joint 
neighboring coding technique. The proposed method uses the difference values between a 
current VQ index and its left and upper neighboring VQ indexes to embed n secret bits into 
one VQ index, where n = 1, 2, 3, or 4. The experimental results show that the proposed scheme 
achieves the embedding rates of 1, 2, 3, and 4 bits per index (bpi) with the corresponding 
average compression rates of 0.420, 0.483, 0.545, and 0.608 bit per pixel (bpp) for a 256 sized 
codebook. These results confirm that our scheme performs better than other selected reversible 
data hiding schemes. 
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1. Introduction 

The ability to transmit information securely has always been of great importance. As new 
ways and formats are developed for sending, storing, and representing information, novel 
methods must also be developed to ensure the security of sensitive information. In our highly 
connected world and with the prevalent use of public network channels for sending sensitive 
information, developing new methods to protect secret information from unauthorized entities 
is of paramount importance to both individuals and organizations.  
Cryptography is one of the methods used for securing sensitive information [1-3]. It has 
proven to be a good method for securing information, however it has its own weakness. That is, 
the encrypted information is fully exposed during transmission. As a result, attackers can 
procure the encrypted data and decrypt it once the encryption method is known. In the case 
where the encryption method is not known, an attacker can still store the encrypted data and 
attempt to decrypt it at his leisure. 

The information hiding (also called data hiding or data embedding) field seeks to protect 
sensitive information by hiding the fact that a message even exists [4]. This is done by hiding 
the sensitive data or secret message within another medium called a cover object that does not 
raise suspicion when transmitted [5]. Two areas of study have emerged within the information 
hiding field, namely digital watermarking and steganography [6]. In watermarking, the 
information embedded into a cover object (e.g., image, audio, video, or text) is pertinent to the 
cover object and is used to verify its validity. In steganography, however, the main purpose of 
the cover object is to hide the fact that covert communication is occurring. 

All techniques developed within the steganographic and watermarking fields can be 
categorized into reversible (also called lossless, invertible, or distortion-free) and irreversible 
(also called lossy) techniques. Reversible techniques [7-9] are those that guarantee the perfect 
reconstruction of a cover object after a secret message has been extracted. Irreversible 
techniques cannot guarantee this [10,11]. Whether a reversible or irreversible technique is 
used in a particular situation depends on the application. If the cover object must be fully 
recovered such as for military or healthcare purposes, a reversible technique must be chosen. 
However, for situations where the full recovery of the cover object is not required, an 
irreversible technique may be applied. 

Information hiding techniques can be applied to three domains, namely the spatial [12-14], 
frequency (or transformed) [15,16], and compressed [17-22] domains. In the spatial domain, 
information is hidden by modifying the amplitudes of the pixel values whereas in the 
frequency domain it is achieved by modifying the transformed coefficients. Many image 
compression algorithms have been used for storing and transmitting images across networks. 
Methods within the compressed domain such as vector quantization (VQ) [23] seek to embed 
secret information during the encoding of the VQ index table. Each domain has its own 
strengths and weaknesses with regard to embedding (or hiding) capacity, storage space, 
processing time, and other features. This article proposes a lossless data hiding system in the 
VQ-compressed domain that is suitable to low bandwidth communication channels. 

In 2009, Chang et al. [24] proposed a reversible information hiding scheme for VQ indices 
using joint neighboring coding (JNC). Their method hides one secret bit into a VQ index in 
raster scan order. The average embedding rate of this method is 0.984 bpi with a compression 
rate of 0.510 bpp for a 256 sized codebook. The main weakness of their method is that it 
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embeds less than 1 bpi and their compression rate is greater than 0.5 bpp. Later in 2009, Wang 
and Lu [25] proposed a path optional lossless data hiding method also based on JNC to 
improve the embedding capacity of Chang et al.’s scheme [24]. Wang and Lu’s method uses 
two paths to allow a user to select the path 1 or 2 to conceal two or three secret bits into one VQ 
index, respectively. For a codebook of size 256, this scheme is able to achieve the average 
embedding rate of 1.953 bpi with the compression rate of 0.573 bpp for the first path and the 
average embedding rate of 2.884 bpi with the compression rate of 0.641 bpp for the second 
path. While there is an improvement in the embedding rate, the scheme however has a high 
compression rate. In 2013, Lee et al. [26] presented a lossless data hiding scheme that achieves 
the embedding rate of 2.952 bpi with the compression rate of 0.546 bpp for the 256 sized 
codebook. This scheme improves the embedding capacity and compression rate of the 
previous schemes [24, 25]. Their scheme, however, degrades quickly as the codebook size is 
increased. The two schemes [24, 25] were also improved by Kieu and Ramroach [27]. In this 
scheme, the first column and the first row of the VQ index table are used as the seed area. That 
is, there is no secret data embedding in this region. Consequently, the embedding rate and 
compression rate of this method can be further improved by eliminating the seed area. 

To surmount the weaknesses of Chang et al.’s [24], Wang and Lu’s [25], and Lee et al.’s 
[26] methods, we propose a novel lossless data hiding scheme for VQ-compressed images 
based on JNC. The proposed method conceals n secret bits, where n = 1, 2, 3, or 4, into each 
VQ index. The scheme achieves the various embedding rates of 1, 2, 3, and 4 bpi with 
compression rates of 0.420, 0.483, 0.545, and 0.608 bpp, respectively, based on the codebook 
sized 256. These results demonstrate that the proposed approach is better than previous 
methods [24-26]. 

The rest of this paper unfolds in the following order. An overview of vector quantization, 
the methods proposed by Chang et al. [24], Wang and Lu [25], and Lee et al. [26] are covered 
in Section 2. The proposed method is then presented in Section 3. The experimental results are 
presented in Section 4, followed by a conclusion in Section 5. 

2. Related Works 
In this section, we present a review of the vector quantization (VQ) and Lee et al.’s method 
[26]. 

2.1 Vector Quantization 
Vector quantization (VQ) is a lossy data compression method commonly used in image 
compression that is based on the block coding principle [23]. There are three steps associated 
with this method: codebook generation, VQ encoding, and VQ decoding. In the first step, the 
codebook CB containing N k-dimensional codewords CWi’s is generated by using the LBG 
clustering algorithm [28], where i = 0, 1, …, N - 1 and CWi = (cwi1, cwi2, …, cwik). The 
greyscale image I sized H×W to be compressed is then partitioned into non-overlapping image 
block B’s sized hs×ws, where hs×ws = k (e.g., H = W = 512, N = 256, hs = ws = 4, k = 16). In 
the second step, the VQ encoder takes each image block B in raster scan order and compresses 
it by examining the codebook CB and selecting the codeword CWi with the minimum 
Euclidean distance from B. The index value of the selected codeword CWi is then inserted into 
the VQ index table T sized (H/hs)×(W/ws) in raster scan order. The final step is the 
reconstruction of the original image I from the received VQ index table T and the codebook 
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CB. Each block B of the original image is reconstructed by taking the respective VQ index in T 
and looking up the codeword CWi associated with it. 

2.2 Lee et al.’s Method 
Lee et al. [26] proposed a lossless data hiding method for VQ indices based on neighboring 
correlation. In general, the scheme embeds r or v secret bits from a secret message S into one 
VQ index of a VQ index table T sized (H/hs)×(W/ws) of a VQ-compressed image I sized H×W, 
where hs×ws represents the image block size used during the VQ encoding process. In this 
scheme, the codewords in the codebook are sorted according to the mean values of the 
codewords before the VQ encoding is carried out. The VQ index table T is composed of 
(H/hs)×(W/ws) VQ indices Ti,j’s, where i = 0, 1, ..., (H/hs) - 1 and j = 0, 1, ..., (W/ws) - 1. Lee et 
al.’s method uses a predefined parameter z that is half the length of the coarse sub-codebook. 
The parameter r is the number of secret bits to be hidden in the case of a fine hit and v is the 
number of secret bits to be concealed in the case of a coarse hit. The values of r and v are 
calculated by r = log2N - 2, v = log2N - 3 - log2(2z), where N is the codebook size. Let y be 
the current VQ index to encode (i.e., y = Ti,j), yl be the VQ index to the left (i.e., yl = Ti,j-1) and 
yt be the VQ index above (i.e., yt = Ti-1,j). Additionally, let fsb0 and fsb1 be the fine 
sub-codebooks associated with yl and yt, respectively, and let csb0 and csb1 be the coarse 
sub-codebooks associated with yl and yt, respectively. These sub-codebooks are defined by 
fsb0 = {yl}, fsb1 = {yt}, csb0 = {yl - z, ..., yl - 1, yl + 1, ..., yl + z}, and csb1 = {yt - z, ..., yt - 1, 
yt + 1, ..., yt + z}, respectively. If y belongs to fsb0 or fsb1, a fine hit state is obtained. If y 
belongs to csb0 or csb1, a coarse hit state is achieved, otherwise a miss state is obtained. 

There are three main cases in their scheme. The first case occurs if y belongs to either fsb0 
(i.e., y = yl) or fsb0 (i.e., y = yt) and this constitutes a fine hit. In this case, a 2-bit indicator code 
00 or 01 is appended to the output code stream CS, followed by the next r secret bits s1s2...sr 
from the secret stream S (i.e., CS = CS||00||s1s2...sr or CS = CS||01||s1s2...sr). The second case is 
where y either exists in csb0 or csb1 and this constitutes a coarse hit. In this case, the 
log2(2z)-bit binary representation of the y’s position, denoted as csbpos, in the corresponding 
coarse sub-codebook is recorded. If y exists in csb0, the bit stream 100||csbpos||s1s2...sv is 
appended to the output code stream CS. If y exists in csb1, the bit stream 101||csbpos||s1s2...sv is 
added to the output code stream CS. In the final case where y is not equal to yl or yt and does 
not belong to csb0 or csb1 (i.e., miss state), the bit stream 11||y2 is appended to the output code 
stream CS, where y2 is the log2N-bit binary representation of y.  

The above embedding procedure is continued until all remaining VQ indices of T are 
processed. The other details of this method can be found in [26]. Lee et al.’s approach 
performs very well for smooth images (e.g., Tiffany image) but it has a poor performance for 
complex images (e.g., Baboon image). In addition, the performance of this scheme degrades 
quickly when the codebook size N is greater than 128 (e.g., N = 256, 512, and 1024). 

3. The Proposed Method 

3.1 The Encoding and Embedding Phase 
The large compression rates of Chang et al.’s [24] and Wang Lu et al.’s [25] schemes may 
arouse attackers’ suspicions. In this section, we present the proposed lossless data hiding 
scheme for VQ indexes based on joint neighboring coding [24]. The proposed scheme can 
embed n secret bits per VQ index in raster scan order, where n = 1, 2, 3 or 4. We limit the value 
of n to be less than or equal to 4 because for values of n greater than 4, the smallest average 



2988                                         Rudder et al.: A Lossless Data Hiding Scheme for VQ Indexes Based on Joint Neighboring Coding 

compression rate attainable is greater than 0.608 bpp for the codebook size N = 256. To 
increase the security of secret data distribution, it is supposed that the secret data has been 
encrypted by using a well-known cryptosystem such as AES [2] before secret data hiding takes 
place. Therefore, even though adversaries can somehow extract the encrypted secret data from 
the output code stream, they still cannot comprehend the real information without also having 
a secure decryption key. 

Firstly, a greyscale cover image I sized H×W is compressed by a VQ encoder that uses an 
N-sized codebook CB containing N k-dimensional codewords (e.g., H = W = 512, N = 256, and 
k = 16). The proposed method uses the codebook that is sorted as mentioned in Chang et al.’s 
method [24]. The result of which is a VQ index table T sized (H/hs)×(W/ws), where hs×ws is 
the image block size used by the VQ encoder (e.g., hs = ws = 4). The VQ index table T = {Ti,j}, 
where 0 ≤ i ≤ H/hs - 1, 0 ≤ j ≤ W/ws - 1, and 0 ≤ Ti,j ≤ N - 1, is scanned in raster scan order for 
encoding and embedding. Secret data hiding occurs during the encoding of each VQ index. 
This process conceals n secret bits from the secret message S into each VQ index in T. The first 
VQ index y located at the first row and column of T (i.e., y = T0,0) is converted to its log2N-bit 
binary representation y2. The first n secret bits s1s2...sn are then read from S and y is encoded by 
y2||s1s2...sn, where || denotes the concatenation operation. The encoded bit stream y2||s1s2...sn is 
then appended to the output code stream CS (i.e., CS = CS||y2||s1s2...sn). 

For all remaining VQ indices, the encoding and embedding process is performed as 
follows. The next VQ index y is read from T (i.e., y = Ti,j ≠ T0,0). In general, the encoding is 
performed on each VQ index by using two difference values dl and du, where dl is the 
difference between the VQ index to the left of y and y (i.e., dl = l - y, where y = Ti,j, l = Ti,j-1), 
and du is the difference between the VQ index directly above y and y (i.e., du = u - y, where y 
= Ti,j, u = Ti-1,j,). The VQ indexes in the first row of T (i.e., y = T0,j where 1 ≤ j ≤ W/ws - 1), 
however, have no upper neighboring VQ indexes to calculate du and so dl is used in this case. 
That is, set l = T0,j-1 and u = l, the difference value du is then computed by du = u - y. Similarly, 
the VQ indexes in the first column of T (i.e., y = Ti,0 where 1 ≤ i ≤ H/hs - 1) have no left 
neighboring VQ indexes to compute dl and so du is used in this case. That is, set u = Ti-1,0 and 
l = u, the difference value dl is then computed by dl = l - y. The calculations of the difference 
values dl and du are shown in Fig. 1. 

 

 
Fig. 1. The calculations of difference values dl and du 

 
The next n secret bits s1s2...sn are then read from S and the values of dl and du are examined. 

If either dl or du is equal to 0 (i.e., case 1: the VQ index to the left or above has the same value 
as the current VQ index y), y is encoded by s1s2...sn||000 or s1s2...sn||001, respectively. The 
encoded bit stream s1s2...sn||000 or s1s2...sn||001 is then appended to the code stream CS (i.e., CS 
= CS||s1s2...sn||000 or CS = CS||s1s2...sn||001). 

If du and dl are not equal to 0, only the value of dl is used to encode y. The absolute value of 
dl, denoted as |dl|, ranges from 0 to N - 1 inclusive. To represent dl requires m bits, where 1 ≤ m 
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≤ log2N, the notation  denotes the ceiling function, and N is the codebook size (e.g., N = 
256). As with previous schemes, a particular value of m is chosen as a threshold value.  

In the case where |dl| cannot be represented in m bits (i.e., case 2: |dl| > 2m - 1), y is encoded 
by s1s2...sn||01||y2, where y2 is the log2N-bit binary representation of y. The encoded bit stream 
s1s2...sn||01||y2 is then appended to the code stream CS (i.e., CS = CS||s1s2...sn||01||y2).  

 
Fig. 2. The flow chart of the proposed encoding and embedding scheme. 
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If dl is greater than or equal to -(2m - 1) and less than 0 (i.e., case 3: -(2m - 1) ≤ dl < 0), y is 
encoded by s1s2...sn||10||(-dl)2, where (-dl)2 is the m-bit binary representation of the absolute 
value of dl. The encoded bit stream s1s2...sn||10||(-dl)2 is then added to the code stream CS (i.e., 
CS = CS||s1s2...sn||10||(-dl)2).  

If dl is greater than 0 and less than or equal to 2m - 1 (i.e., case 4: 0 < dl ≤ 2m - 1), y is 
encoded by s1s2...sn||11||dl2, where dl2 is the m-bit binary representation of dl. The encoded bit 
stream s1s2...sn||11||dl2 is then sent to the code stream CS (i.e., CS = CS||s1s2...sn||11||dl2).  

The above encoding and embedding process is repeated for the next VQ index in raster 
scan order until all VQ indexes in the VQ index table T are processed. The proposed encoding 
and embedding method is summarized in Table 1. The flowchart of the proposed encoding 
and embedding scheme is shown in Fig. 2. The proposed encoding and embedding algorithm 
is described next. 
 

Table 1. Summary of the proposed encoding and embedding scheme 
Secret bits Case 1 Case 2 Case 3 Case 4 

 
s1s2...sn 

Case 1.1: dl = 0 Case 1.2: du = 0 |dl| > 2m - 1 -(2m - 1) ≤ dl < 0 0 < dl ≤ 2m - 1 
s1s2...sn||000 s1s2...sn||001 s1s2...sn||01||y2 s1s2...sn||10||(-dl)2 s1s2...sn||11||dl2 

 
The encoding and embedding algorithm 
Input: A grayscale cover image I sized H×W, a codebook CB sized N, a secret message S, 

the preset values of m and n, where 1 ≤ m ≤ log2N and n = 1, 2, 3, or 4   
Output: The binary code stream CS  
Step 1: Compress I by using a VQ encoder to obtain the VQ index table T sized 

(H/hs)×(W/ws), where hs×ws is the size of an image block used by the VQ encoder. 
Step 2: Read the next VQ index y from the VQ index table T in raster scan order. 
Step 3: If y is the top-left element of T (i.e., y = T0,0), then 
Step 3.1: Read the next n secret bits s1s2...sn from the secret message S. 
Step 3.2: Append y2||s1s2...sn to CS (i.e., CS = CS||y2||s1s2...sn),  

where y2 is the log2N-bit binary representation of y and the notation || denotes the 
concatenation operation. 

Step 4: If y is not the top-left element of T (i.e., y ≠ T0,0), then 
Step 4.1: If y is located in the first row of T except T0,0 (i.e., y = T0,j where 1 ≤ j < W/ws), then 

Set l to be the left neighboring VQ index of y (i.e., l = T0,j-1) and u = l. 
Step 4.2: If y is positioned in the first column of T except T0,0 (i.e., y = Ti,0 where  

1 ≤ i < H/hs), then 
Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,0) and l = u. 

Step 4.3: If y is located from the second row and second column of T (i.e., y = Ti,j where  
1 ≤ i < H/hs and 1 ≤ j < W/ws), then 

Set l to be the left neighboring VQ index of y (i.e., l = Ti,j-1). 
Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,j). 

Step 5: Read the next n secret bits s1s2...sn from the secret message S. 
Step 6: Compute the difference values dl = l - y and du = u - y. 
Step 7: If dl = 0 or du = 0 (i.e., case 1), then  
Step 7.1: If dl equals 0 (i.e., case 1.1), then encode y by s1s2...sn||000. 

Append the bit stream s1s2...sn||000 to CS (i.e., CS = CS||s1s2...sn||000). 
Step 7.2: If du is equal to 0 (i.e., case 1.2), then encode y by s1s2...sn||001. 

Append the bit stream s1s2...sn||001 to CS (i.e., CS = CS||s1s2...sn||001). 
Step 8: Else if |dl| > 2m - 1 (i.e., case 2), then encode y by s1s2...sn||01||y2. 
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Append the bit stream s1s2...sn||01||y2 to CS (i.e., CS = CS||s1s2...sn||01||y2). 
Step 9: Else if -(2m - 1) ≤ dl < 0 (i.e., case 3), then encode y by s1s2...sn||10||(-dl)2,  

where (-dl)2 is the m-bit binary representation of the absolute value of dl. 
Append the bit stream s1s2...sn||10||(-dl)2 to CS (i.e., CS = CS||s1s2...sn||10||(-dl)2). 

Step 10: Else (i.e., case 4: 0 < dl ≤ 2m - 1) encode y by s1s2...sn||11||dl2, 
where dl2 is the m-bit binary representation of dl. 
Append the bit stream s1s2...sn||11||dl2 to CS (i.e., CS = CS||s1s2...sn||11||dl2). 

Step 11: Repeat steps 2 to 10 until all VQ indexes of the VQ index table T are processed. 
Step 12: Output the binary code stream CS. 

3.2 The Decoding and Extracting Phase 
The decoding and extracting process is the inverse process of the encoding and embedding 
process. At the receiving side, with the received code stream CS and N-sized codebook CB, the 
decoder can extract the embedded secret message and restore the original VQ indices. The 
flowchart of the proposed decoding and extracting scheme is shown in Fig. 3. The summary of 
the proposed decoding and extracting algorithm is given below. 
 
The decoding and extracting algorithm 
Input: The binary code stream CS, the codebook CB sized N,  

the preset values of m and n, where 1 ≤ m ≤ log2N and n = 1, 2, 3, or 4  
Output: The extracted secret message S and the reconstructed cover image I’ sized H×W  
Step 1: Let the extracted secret message S and the recovered VQ index table T be empty. 
Step 2: If the currently decoded VQ index y is the top-left element of T (i.e., y is at the 

position T0,0), then 
Step 2.1: Read the next log2N bits from CS and convert them into the decimal value de. 
Step 2.2: Recover the original VQ index by y = de. 
Step 2.3: Read the next n bits c1c2...cn from the code stream CS. 
Step 2.4: Extract the n secret bits by s1s2...sn = c1c2...cn. 
Step 2.5: Update the extracted secret message by S = S||s1s2...sn. 
Step 3: If the currently decoded VQ index y is not the top-left element of T (i.e., y is not at the 

location T0,0), then 
Step 3.1: If the currently decoded VQ index y is located in the first row of T except the 

position T0,0 (i.e., y is at the position T0,j where 1 ≤ j < W/ws), then 
Set l to be the left neighboring VQ index of y (i.e., l = Ti,j-1) and u = l. 

Step 3.2: If the currently decoded VQ index y is positioned in the first column of T except the 
position T0,0 (i.e., y is at the position Ti,0 where 1 ≤ i < H/hs), then 

Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,j) and l = u. 
Step 3.3: If the currently decoded VQ index y is located from the second row and second 

column of T (i.e., y is located at Ti,j where 1 ≤ i < H/hs and 1 ≤ j < W/ws), then 
Set l to be the left neighboring VQ index of y (i.e., l = Ti,j-1). 
Set u to be the upper neighboring VQ index of y (i.e., u = Ti-1,j). 

Step 4: Read the next n bits c1c2...cn from the code stream CS. 
Step 5: Extract the n secret bits by s1s2...sn = c1c2...cn. 

Update the extracted secret message by S = S||s1s2...sn. 
Step 6: Read the next two bits c1c2 from the code stream CS. 
Step 7: If c1c2 = 00 (i.e., case 1: dl = 0 or du = 0), then  
Step 7.1: Read the next bit c3 from the code stream CS. 
Step 7.2: If c3 = 0 (i.e., case 1.1: dl = 0), then recover the original VQ index by y = l. 
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Step 7.3: Else (i.e., c3 = 1, case 1.2: du = 0), then restore the original VQ index by y = u. 
Step 8: Else if c1c2 = 01 (i.e., case 2: |dl| > 2m - 1), then 

Read the next log2N bits from CS and convert them into the decimal value de. 
Reconstruct the original VQ index by y = de. 

Step 9: Else (i.e., case 3: -(2m - 1) ≤ dl < 0 or case 4: 0 < dl ≤ 2m - 1) 
Read the next m bits from CS and convert them into the decimal value dl. 
If c1c2 = 10 (i.e., case 3: -(2m - 1) ≤ dl < 0), then set dl = -dl. 
Recover the original VQ index by y = l - dl. 

Step 10: Insert the restored VQ index y to the VQ index table T in raster scan order. 
Step 11: Repeat steps 3 to 10 until all bits of the code stream CS are processed.  
Step 12: Restore the cover image I’ sized H×W from the constructed VQ index table T sized 

(H/hs)×(W/ws) by using the VQ decoder. 

 
Fig. 3. The flowchart of the proposed decoding and extracting scheme. 
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4. Experimental Results and Discussion 
The proposed scheme was implemented by using Microsoft Visual C++ 2010 software 
running on the Intel Core i7, 2.2 GHz CPU, and 6 GB RAM hardware platform. The binary 
secret message S was randomly generated by using the rand() function. Seven grayscale 
cover images all sized 512×512 were used to test the previous and proposed schemes and are 
shown in Fig. 4. 
 

 
Fig. 4. Grayscale cover images used in performance tests 

 
Sorted codebooks of sizes N = 128, 256, 512, and 1024 consisting of 16-dimensional 

codewords were used to generate the VQ index tables for each test image (i.e., k = hs×ws = 16). 
The performances of the proposed method for the values of n = 1, 2, 3, and 4 (denoted as P1, 
P2, P3, and P4, respectively) are compared to Chang et al.’s scheme [24], Wang and Lu’s 
scheme [25], and Lee et al.’s scheme [26]. 

In order to evaluate the performance of the proposed scheme, four criteria, compression 
rate measured in bit per pixel (bpp), embedding rate measured in bits per index (bpi), 
embedding efficiency, and visual quality of reconstructed images were used. The compression 
rate is defined by CR = ||CS|| / H×W (bpp), where ||CS|| is the length of the output code stream 
CS and H×W represents the number of pixels in the original cover image. The embedding rate 
is defined by ER = ||S|| / NI (bpi), where ||S|| is the total number of secret bits that can be 
embedded into a VQ index table and NI is the number of indices in the VQ index table (i.e., NI 
= (H/hs)×(W/ws)). 

The embedding efficiency (EE) is the number of secret bits embedded when one bit of the 
output code stream CS is transmitted. The embedding efficiency is defined by EE = ||S|| / ||CS|| 
= ER / (CR×hs×ws), where hs×ws is the size of an image block used by the VQ encoder. 

4.1 Experiments on Selecting Appropriate Parameters m and z   

The compression rate performance of Chang et al.’s scheme [24], Wang and Lu’s scheme [25], 
and the proposed scheme is affected by the preset value of the parameter m that is used to 
represent the difference value d in the binary representation. The performances with regard to 
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the embedding rate and compression rate of Lee et al.’s scheme [26] depend on the 
predetermined value of the parameter z that is used for the coarse sub-codebooks. The impact 
of the preset values of the parameter m on the proposed scheme are presented in Tables 2-5. 
and that of the parameter z on Lee et al.’s method are shown in Tables 6-9 in the appdenix. 
 

Table 2. The effect of different values of m on compression rate of the proposed scheme 
with n = 1, 2, 3, and 4 for the codebook size N = 128 

m 1 2 3 4 5 6 7 
a) n = 1 
Lena 0.395 0.376 0.362 0.356 0.365 0.383 0.408 
Peppers 0.388 0.373 0.356 0.351 0.359 0.377 0.401 
Baboon 0.524 0.501 0.478 0.461 0.465 0.494 0.540 
Boats 0.367 0.352 0.343 0.338 0.345 0.360 0.379 
JetF16 0.358 0.343 0.337 0.334 0.340 0.352 0.370 
Tiffany 0.292 0.281 0.282 0.288 0.297 0.307 0.318 
GoldHill 0.429 0.410 0.387 0.378 0.390 0.416 0.448 
Average CR 0.393 0.377 0.364 0.358 0.366 0.384 0.409 
b) n = 2 
Lena 0.458 0.439 0.424 0.418 0.427 0.446 0.470 
Peppers 0.450 0.435 0.418 0.413 0.422 0.440 0.463 
Baboon 0.586 0.563 0.541 0.524 0.527 0.557 0.603 
Boats 0.430 0.414 0.406 0.400 0.407 0.422 0.442 
JetF16 0.421 0.405 0.399 0.397 0.403 0.415 0.433 
Tiffany 0.354 0.344 0.344 0.351 0.359 0.370 0.381 
GoldHill 0.492 0.473 0.449 0.440 0.453 0.479 0.511 
Average CR 0.456 0.439 0.426 0.420 0.428 0.447 0.472 
c) n =3 
Lena 0.520 0.501 0.487 0.481 0.490 0.508 0.533 
Peppers 0.513 0.498 0.481 0.476 0.484 0.502 0.526 
Baboon 0.649 0.626 0.603 0.586 0.590 0.619 0.665 
Boats 0.492 0.477 0.468 0.463 0.470 0.485 0.504 
JetF16 0.483 0.468 0.462 0.459 0.465 0.477 0.495 
Tiffany 0.417 0.406 0.407 0.413 0.422 0.432 0.443 
GoldHill 0.554 0.535 0.512 0.503 0.515 0.541 0.573 
Average CR 0.518 0.502 0.489 0.483 0.491 0.509 0.534 
d) n = 4 
Lena 0.583 0.564 0.549 0.543 0.552 0.571 0.595 
Peppers 0.575 0.560 0.543 0.538 0.547 0.565 0.588 
Baboon 0.711 0.688 0.666 0.649 0.652 0.682 0.728 
Boats 0.555 0.539 0.531 0.525 0.532 0.547 0.567 
JetF16 0.546 0.530 0.524 0.522 0.528 0.540 0.558 
Tiffany 0.479 0.469 0.469 0.476 0.484 0.495 0.506 
GoldHill 0.617 0.598 0.574 0.565 0.578 0.604 0.636 
Average CR 0.581 0.564 0.551 0.545 0.553 0.572 0.597 

 
Table 3. The effect of different values of m on compression rate of the proposed scheme 

with n = 1, 2, 3, and 4 for the codebook size N = 256 
m 1 2 3 4 5 6 7 8 

a) n = 1 
Lena 0.501 0.476 0.444 0.426 0.428 0.446 0.476 0.512 
Peppers 0.488 0.463 0.434 0.414 0.416 0.436 0.464 0.498 
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Baboon 0.623 0.603 0.572 0.544 0.530 0.541 0.581 0.636 
Boats 0.440 0.421 0.395 0.386 0.389 0.403 0.426 0.453 
JetF16 0.443 0.407 0.392 0.387 0.392 0.407 0.430 0.459 
Tiffany 0.388 0.354 0.333 0.333 0.346 0.366 0.388 0.411 
GoldHill 0.537 0.513 0.478 0.453 0.448 0.471 0.507 0.550 
Average CR 0.489 0.462 0.435 0.420 0.421 0.439 0.467 0.503 
b) n = 2 
Lena 0.563 0.539 0.506 0.488 0.491 0.509 0.539 0.575 
Peppers 0.551 0.525 0.496 0.477 0.479 0.498 0.527 0.561 
Baboon 0.685 0.666 0.634 0.607 0.592 0.603 0.644 0.698 
Boats 0.502 0.484 0.457 0.449 0.451 0.466 0.488 0.516 
JetF16 0.506 0.469 0.454 0.450 0.454 0.470 0.493 0.521 
Tiffany 0.450 0.417 0.396 0.396 0.409 0.429 0.451 0.474 
GoldHill 0.599 0.575 0.541 0.515 0.511 0.533 0.570 0.612 
Average CR 0.551 0.525 0.498 0.483 0.484 0.501 0.530 0.565 
c) n = 3 
Lena 0.626 0.601 0.569 0.551 0.553 0.571 0.601 0.637 
Peppers 0.613 0.588 0.559 0.539 0.541 0.561 0.589 0.623 
Baboon 0.748 0.728 0.697 0.669 0.655 0.666 0.706 0.761 
Boats 0.565 0.546 0.520 0.511 0.514 0.528 0.551 0.578 
JetF16 0.568 0.532 0.517 0.512 0.517 0.532 0.555 0.584 
Tiffany 0.513 0.479 0.458 0.458 0.471 0.491 0.513 0.536 
GoldHill 0.662 0.638 0.603 0.578 0.573 0.596 0.632 0.675 
Average CR 0.614 0.587 0.560 0.545 0.546 0.564 0.592 0.628 
d) n = 4 
Lena 0.688 0.664 0.631 0.613 0.616 0.634 0.664 0.700 
Peppers 0.676 0.650 0.621 0.602 0.604 0.623 0.652 0.686 
Baboon 0.810 0.791 0.759 0.732 0.717 0.728 0.769 0.823 
Boats 0.627 0.609 0.582 0.574 0.576 0.591 0.613 0.641 
JetF16 0.631 0.594 0.579 0.575 0.579 0.595 0.618 0.646 
Tiffany 0.575 0.542 0.521 0.521 0.534 0.554 0.576 0.599 
GoldHill 0.724 0.700 0.666 0.640 0.636 0.658 0.695 0.737 
Average CR 0.676 0.650 0.623 0.608 0.609 0.626 0.655 0.690 

 
Table 4. The effect of different values of m on compression rate of the proposed scheme 

with n = 1, 2, 3, and 4 for the codebook size N = 512 
m 1 2 3 4 5 6 7 8 

a) n = 1 
Lena 0.601 0.582 0.544 0.512 0.497 0.506 0.531 0.569 
Peppers 0.589 0.569 0.538 0.500 0.484 0.491 0.517 0.554 
Baboon 0.706 0.692 0.670 0.639 0.608 0.591 0.607 0.656 
Boats 0.526 0.505 0.475 0.453 0.446 0.452 0.473 0.502 
JetF16 0.567 0.535 0.487 0.468 0.470 0.484 0.510 0.545 
Tiffany 0.468 0.442 0.416 0.398 0.397 0.410 0.435 0.465 
GoldHill 0.623 0.602 0.572 0.536 0.511 0.515 0.544 0.587 
Average CR 0.583 0.561 0.529 0.501 0.488 0.493 0.517 0.554 
b) n = 2 
Lena 0.664 0.644 0.606 0.574 0.559 0.568 0.593 0.631 
Peppers 0.652 0.631 0.600 0.562 0.546 0.554 0.580 0.617 
Baboon 0.768 0.754 0.732 0.701 0.670 0.654 0.670 0.718 
Boats 0.588 0.567 0.537 0.515 0.508 0.515 0.535 0.565 
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JetF16 0.629 0.597 0.550 0.531 0.533 0.547 0.572 0.608 
Tiffany 0.530 0.505 0.478 0.460 0.459 0.472 0.498 0.528 
GoldHill 0.686 0.665 0.635 0.599 0.573 0.577 0.606 0.649 
Average CR 0.645 0.623 0.591 0.563 0.550 0.555 0.579 0.617 
c) n = 3 
Lena 0.726 0.707 0.669 0.637 0.622 0.631 0.656 0.694 
Peppers 0.714 0.694 0.663 0.625 0.609 0.616 0.642 0.679 
Baboon 0.831 0.817 0.795 0.764 0.733 0.716 0.732 0.781 
Boats 0.651 0.630 0.600 0.578 0.571 0.577 0.598 0.627 
JetF16 0.692 0.660 0.612 0.593 0.595 0.609 0.635 0.670 
Tiffany 0.593 0.567 0.541 0.523 0.522 0.535 0.560 0.590 
GoldHill 0.748 0.727 0.697 0.661 0.636 0.640 0.669 0.712 
Average CR 0.708 0.686 0.654 0.626 0.613 0.618 0.642 0.679 
d) n = 4 
Lena 0.789 0.769 0.731 0.699 0.684 0.693 0.718 0.756 
Peppers 0.777 0.756 0.725 0.687 0.671 0.679 0.705 0.742 
Baboon 0.893 0.879 0.857 0.826 0.795 0.779 0.795 0.843 
Boats 0.713 0.692 0.662 0.640 0.633 0.640 0.660 0.690 
JetF16 0.754 0.722 0.675 0.656 0.658 0.672 0.697 0.733 
Tiffany 0.655 0.630 0.603 0.585 0.584 0.597 0.623 0.653 
GoldHill 0.811 0.790 0.760 0.724 0.698 0.702 0.731 0.774 
Average CR 0.770 0.748 0.716 0.688 0.675 0.680 0.704 0.742 

 
Table 5. The effect of different values of m on compression rate of the proposed scheme 

with n = 1, 2, 3, and 4 for the codebook size N = 1024 
m 1 2 3 4 5 6 7 8 9 

a) n = 1 
Lena 0.698 0.682 0.655 0.620 0.585 0.573 0.583 0.612 0.655 
Peppers 0.673 0.659 0.632 0.599 0.562 0.550 0.562 0.594 0.635 
Baboon 0.780 0.771 0.756 0.730 0.700 0.668 0.656 0.676 0.726 
Boats 0.612 0.588 0.551 0.517 0.507 0.507 0.520 0.546 0.681 
JetF16 0.638 0.605 0.553 0.520 0.513 0.520 0.539 0.570 0.608 
Tiffany 0.553 0.515 0.475 0.445 0.438 0.446 0.469 0.502 0.538 
GoldHill 0.707 0.693 0.671 0.638 0.599 0.576 0.583 0.616 0.663 
Average CR 0.666 0.645 0.613 0.581 0.558 0.549 0.559 0.588 0.644 
b) n = 2 
Lena 0.760 0.744 0.718 0.682 0.647 0.635 0.645 0.675 0.718 
Peppers 0.736 0.721 0.695 0.661 0.624 0.613 0.625 0.656 0.697 
Baboon 0.843 0.834 0.818 0.793 0.762 0.730 0.718 0.738 0.789 
Boats 0.674 0.651 0.613 0.580 0.570 0.569 0.582 0.608 0.643 
JetF16 0.701 0.668 0.615 0.582 0.575 0.583 0.601 0.633 0.671 
Tiffany 0.615 0.577 0.538 0.508 0.500 0.509 0.532 0.565 0.600 
GoldHill 0.769 0.755 0.733 0.700 0.661 0.638 0.646 0.679 0.726 
Average CR 0.728 0.707 0.676 0.644 0.620 0.611 0.621 0.651 0.692 
c) n = 3 
Lena 0.823 0.807 0.780 0.745 0.710 0.698 0.708 0.737 0.780 
Peppers 0.798 0.784 0.757 0.724 0.687 0.675 0.687 0.719 0.760 
Baboon 0.905 0.896 0.881 0.855 0.825 0.793 0.781 0.801 0.851 
Boats 0.737 0.713 0.676 0.642 0.632 0.632 0.645 0.671 0.706 
JetF16 0.763 0.730 0.678 0.645 0.638 0.645 0.664 0.695 0.733 
Tiffany 0.678 0.640 0.600 0.570 0.563 0.571 0.594 0.627 0.663 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015                                    2997 

GoldHill 0.832 0.818 0.796 0.763 0.724 0.701 0.708 0.741 0.788 
Average CR 0.791 0.770 0.738 0.706 0.683 0.674 0.684 0.713 0.754 
d) n = 4 
Lena 0.885 0.869 0.843 0.807 0.772 0.760 0.770 0.800 0.843 
Peppers 0.861 0.846 0.820 0.786 0.749 0.738 0.750 0.781 0.822 
Baboon 0.968 0.959 0.943 0.918 0.887 0.855 0.843 0.863 0.914 
Boats 0.799 0.776 0.738 0.705 0.695 0.694 0.707 0.733 0.768 
JetF16 0.826 0.793 0.740 0.707 0.700 0.708 0.726 0.758 0.796 
Tiffany 0.740 0.702 0.663 0.633 0.625 0.634 0.657 0.690 0.725 
GoldHill 0.894 0.880 0.858 0.825 0.786 0.763 0.771 0.804 0.851 
Average CR 0.853 0.832 0.801 0.769 0.745 0.736 0.746 0.776 0.817 

 
It can be seen from Tables 2-9 that to obtain the optimal (i.e., smallest value) compression 

rate with the codebooks of sizes N = 128, 256, 512, and 1024, the selected values of the 
parameter m for the proposed scheme are m = 4, 4, 5 and 6, respectively. For Lee et al.’s 
scheme [26], the parameter z is chosen so that the scheme achieves its maximum embedding 
rate. Thus, the suggested values of the parameter z for this method are z = 2, 4, 8 and 16, 
respectively. 

4.2 Comparing the Proposed Scheme with Previous Schemes   

In this section, we compare the performance results of the proposed scheme with the schemes 
proposed by Chang et al. [24], Wang and Lu [25] with paths 1 and 2 as well as Lee et al. [26]. 
The comparative results among the simulated methods with regard to average embedding rate 
ER, compression rate CR, and embedding efficiency EE for the codebooks of sizes N = 128, 
256, 512 and 1024 are shown in Table 10. It is noted that, the codebook sizes N = 128, 256, 
512, and 1024, the selected values of the parameter m for Chang et al.’s scheme [24] are m = 1, 
4, 6, and 7, respectively. The suitable values of the parameter m for Wang and Lu’s scheme 
[25] with the path 1 are m = 2, 3, 5, and 6, respectively. The proper values of the parameter m 
for Wang and Lu’s scheme [25] with the path 2 are m = 2, 4, 5, and 6, respectively. 
 

Table 10. Results of average ER (bpi), CR (bpp), and EE of simulated methods with their selected 
values of m and z for codebook sizes N = 128, 256, 512, and 1024 and test images in Fig. 4 

Methods Factors 128 256 512 1024 
Chang et al. [24]  ER 0.984 0.984 0.984 0.984 
 CR 0.400 0.510 0.583 0.649 
 EE 0.154 0.121 0.106 0.095 
  m = 1 m = 4 m = 6 m = 7 
Wang and Lu [25] path 1 ER 1.953 1.953 1.953 1.953 
 CR 0.504 0.573 0.638 0.696 
 EE 0.242 0.213 0.191 0.175 
  m = 2 m = 3 m = 5 m = 6 
Wang and Lu [25] path 2 ER 2.884 2.884 2.884 2.884 
 CR 0.572 0.641 0.706 0.765 
 EE 0.315 0.281 0.255 0.236 
  m = 2 m = 4 m = 5 m = 6 
Lee et al. [26]  ER 3.128 2.952 2.740 2.679 
 CR 0.475 0.546 0.612 0.673 
 EE 0.412 0.338 0.280 0.249 
  z = 2 z = 4 z = 8 z = 16 
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Proposed with n = 1 (P1) ER 1.000 1.000 1.000 1.000 
 CR 0.358 0.420 0.488 0.549 
 EE 0.175 0.149 0.128 0.114 
  m = 4 m = 4 m = 5 m = 6 
Proposed with n = 2 (P2) ER 2.000 2.000 2.000 2.000 
 CR 0.420 0.483 0.550 0.611 
 EE 0.298 0.259 0.227 0.205 
  m = 4 m = 4 m = 5 m = 6 
Proposed with n = 3 (P3) ER 3.000 3.000 3.000 3.000 
 CR 0.483 0.545 0.613 0.674 
 EE 0.388 0.344 0.306 0.278 
  m = 4 m = 4 m = 5 m = 6 
Proposed with n = 4 (P4) ER 4.000 4.000 4.000 4.000 
 CR 0.545 0.608 0.675 0.736 
 EE 0.459 0.411 0.370 0.340 
  m = 4 m = 4 m = 5 m = 6 

 
While both Chang et al.’s scheme [24] and the proposed scheme with n = 1 produce 

embedding rates near 1 bpi, the method P1 achieves a true 1 bpi while Chang et al.’s scheme 
obtains 0.984 bpi. Chang et al.’s scheme does not achieve 1 bpi as it uses the first row and first 
column as a seed area and does not embed secret data in this area. Additionally, P1 achieves 
the embedding rate of 1 bpi with significantly lower compression rates than Chang et al.’s 
scheme across all codebook sizes tested as can be seen in Table 10. The reason for Chang et 
al.’s high compression rates is due to the fact that this scheme uses m padding bits 0’s when the 
difference value d = 0 or |d| > 2m - 1. With respect to the embedding efficiency, Table 10 
demonstrates that the embedding efficiencies of the scheme P1 are higher than those of Chang 
et al.’s scheme [24] regardless of the codebook sizes. This confirms the superiority of the 
scheme P1 over Chang et al.’s scheme. 

A similar trend can be seen from Table 10 when comparing Wang and Lu’s scheme [25] 
with the path 1 which produces near 2 bpi to the scheme P2. Wang and Lu’s method with the 
path 1 produces the embedding rate of 1.953 bpi while P2 produces a true 2 bpi. As can be seen 
from Table 10, the method P2 achieves a slightly higher embedding rate with much smaller 
compression rates regardless of the codebook sizes. The higher compression rates of Wang 
and Lu’s scheme [25] with the path 1 are also due to the use of m padding bits 0’s in the case 
where the difference value d = 0. For the embedding efficiency comparison, Table 10 
indicates that the embedding efficiencies obtained by Wang and Lu’s method [25] with the 
path 1 are 0.242, 0.213, 0.191, and 0.175 whereas those attained by the method P2 are 0.298, 
0.259, 0.227, and 0.205. This demonstrates that the scheme P2 surpasses Wang and Lu’s 
scheme with the path 1. 

Both Wang and Lu’s scheme [25] with the path 2 and Lee et al.’s scheme [26] produce 
embedding rates around 3 bpi and are comparable with the scheme P3. Table 10 shows that 
Wang and Lu’s scheme and P3 both have the constant embedding rates of 2.884 bpi and 3 bpi, 
respectively, regardless of the codebook sizes. Lee et al.’s method, however, has the variable 
embedding rates of 3.128, 2.952, 2.740, and 2.679 bpi for the codebooks of sizes 128, 256, 512, 
and 1024, respectively.  

From Table 10 we can see that Wang and Lu’s scheme [25] with the path 2 has a lower 
embedding rate than the scheme P3. This is due to the fact that their scheme requires a large 
seed area (i.e., first two rows, first two columns, and the rightmost column of the VQ index 
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table) whereas P3 truly embeds secret data into every VQ index. Wang and Lu’s scheme with 
the path 2 also has much higher compression rates across all codebook sizes. This is because 
the utilization of the neighboring VQ indices in computing the difference value d by Wang and 
Lu’s scheme leads to a large value of d. In addition, m padding bits 0’s are used by this scheme 
when the difference value d = 0. In terms of the embedding efficiency, it can be observed from 
Table 10 that the embedding efficiencies achieved by Wang and Lu’s method [25] with the 
path 2 are 0.315, 0.281, 0.255, and 0.236, those gained by Lee et al.’s [26] scheme are 0.412, 
0.338, 0.280, and 0.249, and those obtained by P3 are 0.388, 0.344, 0.306, and 0.278. Thus, it 
can be deduced that the embedding efficiency of the scheme P3 is superior to that of Wang and 
Lu’s method [25] with the path 2. We can see from Table 10 that, for the 128 sized codebook, 
Lee et al.’s method has the EE value of 0.412 which is better than the P3’s result of 0.388 for 
the same codebook size. This is supported by their slightly higher embedding rate of 3.128 bpi 
versus 3 bpi for P3 and a better compression rate of 0.475 bpp versus 0.483 bpp for P3. For the 
three remaining codebooks, however, the scheme P3 has the better EE values of 0.344, 0.306, 
and 0.278 whereas the EE values of Lee et al.’s method are 0.338, 0.280, and 0.249. This is 
due to the fact that Lee et al.’s scheme embeds less secret data when the codebook size 
increases whereas our scheme remains the constant embedding rate regardless of the codebook 
size. Additionally, with the exception of the 128 sized codebook, the compression rate of our 
method stays within 0.001 of theirs. Thus, it can be concluded that the performance of Lee et 
al.’s method is better than that of the scheme P3 for the 128 sized codebook and the scheme P3 
has a better performance than Lee et al.’s scheme for the codebooks sized 256, 512, and 1024. 
 

Table 11. Comparative results of Lee et al.’s scheme [26] and P3 for smooth image Tiffany 
and complex image Baboon 

a) Tiffany image 
Methods Factors 128 256 512 1024 

Lee et al. [26] ER 4.345 4.281 4.186 4.275 
  CR 0.444 0.515 0.585 0.642 
  EE 0.612 0.520 0.447 0.416 
    z = 2 z = 4 z = 8 z = 16 
Proposed with n = 3 ER 3 3 3 3 
  CR 0.413 0.458 0.522 0.571 
  EE 0.454 0.409 0.359 0.328 
    m = 4 m = 4 m = 5 m = 6 
b) Baboon image 
Lee et al. [26] ER 1.447 1.125 0.992 0.942 
  CR 0.514 0.584 0.648 0.709 
  EE 0.176 0.120 0.096 0.083 
    z = 2 z = 4 z = 8 z = 16 
Proposed with n = 3 ER 3 3 3 3 
  CR 0.586 0.669 0.733 0.793 
  EE 0.320 0.280 0.256 0.236 
    m = 4 m = 4 m = 5 m = 6 

 
Lee et al.’s method [26] has an excellent performance in terms of the embedding rate, 

compression rate, and embedding efficiency for smooth images such as the Tiffany image, as 
shown in Table 11. For the Tiffany image, their method is capable of attaining the embedding 
rates of 4.345, 4.281, 4.186, and 4.275 bpi at the compression rates of 0.444, 0.515, 0.585, and 
0.642 bpp for the codebooks sized 128, 256, 512, and 1024, respectively. Thus, it is clear that 
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Lee et al.’s method surpasses the scheme P3 for smooth images. As can be seen from Table 11, 
however, Lee et al.’s method performs poorly when applied to complex images (e.g., Baboon 
image) and this effect worsens as the codebook size increases. We can clearly see this from the 
results of the Baboon image. Thus, it can be said that the scheme P3 is superior to Lee et al.’s 
method for complex images. 

None of the previous schemes [24-26] achieves average embedding rates around 4 bpi. 
From Table 10, we can see that, for the 128 sized codebook, the scheme P4 achieves the 
embedding rate of 4 bpi at the average compression rate of 0.545 bpp that is within an 
acceptable range. Even though for the codebook of size 256, the scheme P4 has a higher 
compression rate of 0.608 bpp for the embedding rate of 4 bpi. Thus, we believe that this is still 
viable. Table 10 further shows that there is a jump in the compression rate for the 512 and 
1024 sized codebooks, making use of P4 at these codebook sizes less alluring. 

The visual quality of the reconstructed images was evaluated by using peak signal-to-noise 
ratio (PSNR) which is defined as follows. 
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The MSE (mean square error) is the difference between the original cover image I sized 
H×W and the reconstructed image I’ sized H×W, and I(i, j) and I’(i, j) are the values of the 
pixels located at the ith row and jth column of I and I’, respectively. Because the simulated 
schemes reversibly conceal secret bits into VQ indices in a VQ index table, the original VQ 
indices can be completely recovered. Therefore, the PSNR values of the simulated methods are 
the same as those of the VQ compression method. Fig. 5 shows the PSNR values of the 
simulated schemes for the codebook size N = 256. 

 

 
Fig. 5. Visual quality results of restored cover images of simulated schemes. 

5. Conclusion 
In this paper, we propose a novel lossless data hiding method for VQ indices based on joint 
neighboring coding. The proposed method embeds n secret bits into one VQ index, where n = 
1, 2, 3, 4. The proposed approach can obtain the embedding rates of 1, 2, 3, and 4 bpi. Using 
the embedding efficiency EE as a fair comparison factor among the simulated methods, our 
method surpasses the three previous works, namely Chang et al.’s [24] and Wang and Lu’s 
[25] schemes for all codebook sizes except Lee et al.’s method [26] for the 128 sized codebook. 
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Thus, we can conclude that our method is a viable method for use in a data hiding application 
such as digital libaries or secret communications. 

Appendix 
Table 6. The effect of different values of z on embedding rate and compression rate of Lee et al.’s 

scheme [26] for the codebook size N = 128 
Images z 1 2 4 8 
Lena ER 3.074 3.142 3.086 2.899 

 CR 0.483 0.475 0.467 0.456 
Peppers ER 3.155 3.220 3.157 2.992 

  CR 0.481 0.473 0.467 0.455 
Baboon ER 1.364 1.447 1.387 1.131 

  CR 0.525 0.514 0.502 0.484 
Boats ER 3.423 3.489 3.428 3.276 

  CR 0.474 0.467 0.462 0.455 
JetF16 ER 3.543 3.609 3.538 3.397 

  CR 0.472 0.464 0.460 0.453 
Tiffany ER 4.340 4.345 4.239 4.090 

  CR 0.450 0.444 0.442 0.440 
GoldHill ER 2.597 2.644 2.567 2.354 

  CR 0.494 0.486 0.477 0.460 
Average ER 3.071 3.128 3.057 2.877 
Average CR 0.483 0.475 0.468 0.458 

 
Table 7. The effect of different values of z on embedding rate and compression rate of Lee et al.’s 

scheme [26] for the codebook size N = 256 
Images z 1 2 4 8 16 
Lena ER 2.604 2.718 2.841 2.757 2.405 

  CR 0.569 0.562 0.548 0.531 0.517 
Peppers ER 2.764 2.905 2.987 2.932 2.593 

  CR 0.566 0.558 0.546 0.529 0.516 
Baboon ER 0.934 1.026 1.125 1.074 0.711 

  CR 0.603 0.597 0.584 0.565 0.542 
Boats ER 3.419 3.482 3.557 3.476 3.214 

  CR 0.552 0.547 0.537 0.525 0.516 
JetF16 ER 3.361 3.543 3.564 3.423 3.139 

  CR 0.553 0.543 0.533 0.524 0.515 
Tiffany ER 4.129 4.297 4.281 4.099 3.787 

  CR 0.535 0.525 0.515 0.507 0.503 
GoldHill ER 2.111 2.221 2.306 2.251 1.889 

  CR 0.579 0.572 0.560 0.540 0.521 
Average ER 2.760 2.885 2.952 2.859 2.534 
Average CR 0.565 0.558 0.546 0.532 0.519 

 
Table 8. The effect of different values of z on embedding rate and compression rate of Lee et al.’s 

scheme [26] for the codebook size N = 512 
Images z 1 2 4 8 16 32 
Lena ER 2.158 2.303 2.457 2.592 2.393 1.913 

  CR 0.647 0.641 0.631 0.611 0.593 0.580 
Peppers ER 2.306 2.436 2.601 2.739 2.597 2.145 
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  CR 0.645 0.640 0.630 0.612 0.593 0.578 
Baboon ER 0.664 0.766 0.884 0.992 0.919 0.508 

  CR 0.675 0.670 0.663 0.648 0.627 0.601 
Boats ER 3.166 3.267 3.414 3.480 3.330 2.974 

  CR 0.630 0.625 0.616 0.603 0.590 0.579 
JetF16 ER 2.633 2.784 2.984 3.012 2.749 2.290 

  CR 0.638 0.631 0.618 0.601 0.589 0.579 
Tiffany ER 4.039 4.093 4.224 4.186 3.957 3.559 

  CR 0.612 0.607 0.596 0.585 0.574 0.567 
GoldHill ER 1.815 1.949 2.085 2.177 2.067 1.619 

  CR 0.654 0.648 0.639 0.624 0.603 0.581 
Average ER 2.397 2.514 2.664 2.740 2.573 2.144 
Average CR 0.643 0.637 0.628 0.612 0.596 0.581 

 
Table 9. The effect of different values of z on embedding rate and compression rate of Lee et al.’s 

scheme [26] for the codebook size N = 1024 
Images z 1 2 4 8 16 32 64 
Lena ER 1.691 1.819 2.033 2.226 2.309 2.078 1.528 

  CR 0.723 0.719 0.710 0.697 0.677 0.657 0.643 
Peppers ER 2.023 2.144 2.333 2.510 2.586 2.384 1.852 

  CR 0.717 0.714 0.706 0.694 0.675 0.655 0.641 
Baboon ER 0.501 0.579 0.694 0.834 0.942 0.833 0.386 

  CR 0.742 0.739 0.734 0.725 0.709 0.688 0.662 
Boats ER 2.881 3.035 3.231 3.445 3.441 3.167 2.721 

  CR 0.704 0.700 0.692 0.677 0.662 0.652 0.641 
JetF16 ER 2.521 2.761 3.102 3.269 3.156 2.802 2.277 

  CR 0.709 0.702 0.689 0.673 0.660 0.649 0.639 
Tiffany ER 3.795 4.076 4.325 4.403 4.275 3.904 3.397 

  CR 0.689 0.680 0.668 0.655 0.642 0.633 0.628 
GoldHill ER 1.538 1.644 1.780 1.948 2.041 1.906 1.389 

  CR 0.725 0.722 0.716 0.705 0.688 0.664 0.642 
Average ER 2.136 2.294 2.500 2.662 2.679 2.439 1.936 
Average CR 0.716 0.711 0.702 0.689 0.673 0.657 0.642 
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