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Abstract 

Quality-of-service (QoS) provisioning for a cognitive mesh network (CMN) with 
heterogeneous services has become a challenging area of research in recent days. Considering 
both real-time (RT) and non-real-time (NRT) traffic in a multihop CMN, [1] studied 
cross-layer resource management, including joint access control, route selection, and resource 
allocation. Due to the complexity of the formulated resource allocation problems, which are 
mixed-integer non-linear programming, a low-complexity yet efficient algorithm was 
proposed there to approximately solve the formulated optimization problems. In contrast, in 
this work, we present an application of genetic algorithm (GA) to re-address the hard resource 
allocation problems studied in [1]. Novel initialization, selection, crossover, and mutation 
operations are designed such that solutions with enough randomness can be generated and 
converge with as less number of attempts as possible, thus improving the efficiency of the 
algorithm effectively. Simulation results show the effectiveness of the newly proposed 
GA-based algorithm. Furthermore, by comparing the performance of the newly proposed 
algorithm with the one proposed in [1], more insights have been obtained in terms of the 
tradeoff among QoS provisioning for RT traffic, throughput maximization for NRT traffic, 
and time complexity of an algorithm for resource allocation in a multihop network such as 
CMN. 
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1. Introduction 

To accommodate the explosively growing data traffic in a large coverage area, cognitive 
radio based wireless mesh network or cognitive mesh network (CMN) has been considered as 
one of the most promising solutions [1-3]. By using cognitive radio, CMN is capable of 
utilizing spectrum resource from primary spectrum such as TV-band spectrum. However, to 
protect the transmission of primary users, a cognitive radio shall switch among primary 
channels if a primary user returns to the channel it uses, leading to time-varying capacity of a 
cognitive radio-based network [4]. As such, quality-of-service (QoS) provisioning for such a 
network is a challenging issue. 

In the literature, there exist a number of research works studying resource allocation and/or 
QoS provisioning for cognitive radio networks (CRNs). [5] studied joint spectrum allocation, 
scheduling, and flow routing such that the required network-wide radio spectrum in a CRN is 
minimized. By integrating per-node-based power control, the algorithm proposed in [6] can 
minimize the network-wide bandwidth-footprint-product (BFP) of a CRN. With physical layer 
signal-to-interference-and-noise-ratio (SINR) model, [7] studied capacity maximization for 
CRNs by jointly optimizing power control, scheduling, and flow routing. However, the 
heterogeneous services which can coexist in a CMN and the support of their differentiated 
QoS requirements were not taken into account in the aforesaid works. In contrast, QoS 
provisioning for heterogeneous services in CRNs was studied in some recent works (e.g., 
[8-10]). In [8], QoS differentiation between real-time (RT) and non-real-time (NRT) 
secondary users (SUs) was achieved at the call level when allocating channel between the two 
types of users. Studied in [9] and [10] were joint channel and power allocation with the 
objective of maximizing network capacity while providing minimum rate guarantee for SUs 
with RT traffic and fair rate sharing among SUs with NRT traffic. However, as these works 
mainly focus on single-hop CRNs, directly applying these schemes in a multihop CMN can be 
ineffective or inefficient.  

Differently, by considering heterogeneous traffic consisted of both RT and NRT traffic in a 
multihop setting of CMN, studied in [1] were cross-layer resource management, including 
joint access control, route selection, and channel and power allocation. Mathematically, the 
cross-layer resource allocation problem studied in [1] was formulated as three optimization 
sub-problems. The first one was to select route requested by any new flow, with the objective 
of choosing a route with maximal expected transmission rate, and it was addressed by the 
shortest-path-based algorithm. The other two were on joint channel and power allocation, 
which, respectively, were for RT flows with the objective of minimizing consumed network 
resources but serving as many RT flows as possible and for NRT flows with the objective of 
maximizing the total background throughput. Both were formulated as interrelated NP-hard 
mixed-integer nonlinear programming (MINLP) problems. The access control for RT flows 
was implemented accompanied with route selection and channel and power allocation. By 
using a two-level decoupling approach, a low-complexity yet efficient algorithm was 
proposed to approximately solve the high-complexity MINLP problems. Simulation results 
show the effectiveness of the proposed algorithm in terms of improving both the RT flow’s 
mean access ratio and the NRT flow’s mean throughput. However, due to the complexity of 
the formulated channel and power allocation problems, the algorithm proposed in previous 
works [1] failed to show the optimal performance of a CMN when supporting both RT and 
NRT traffic.  
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To have an in-depth understanding of the performance of a CMN supporting 
heterogeneous services including both RT and NRT traffic, in this work we present an 
application of genetic algorithm (GA) to re-address the resource allocation problems (channel 
and power allocation for both RT and NRT traffic) studied in [1]. The newly proposed 
GA-based algorithm can be treated as the optimal solution, because GA has been proven to be 
effective in solving NP-hard problems [11, 12]. The main contributions and significance of 
this work are twofold. 

First of all, we propose a novel GA-based algorithm that is tailored for the channel and 
power allocation for a multihop CMN with both RT and NRT traffic. Novel initialization, 
selection, crossover, and mutation operations are defined such that solutions with enough 
randomness can be generated and converge with as less number of attempts as possible, which 
improves the efficiency of the algorithm effectively. Apart from this, elitism strategy is 
integrated into the algorithm design to guarantee the performance of the proposed algorithm.  

Secondly, the effectiveness of the proposed GA-based algorithm can be observed from 
simulation results, especially in increasing the access ratio of RT flows. Furthermore, with the 
GA-based algorithm, the tradeoff between QoS provisioning for RT flows and throughput 
maximization for NRT flows can be more obvious, because the GA-based algorithm is able to 
fully utilize network resources to admit as many RT flows as possible. Additionally, by 
comparing the performance of the newly proposed algorithm with the algorithm designed in 
[1], more insights have been obtained in terms of the tradeoff among QoS provisioning for RT 
traffic, throughput maximization for NRT traffic, and time complexity of a resource allocation 
algorithm. 

The remainder of this paper is organized as follows. A short review of applying GA to 
resource allocation for wireless networks is provided in Section 2. Section 3 introduces the 
system model reused from [1]. The GA-based algorithm tailored for RT traffic resource 
allocation (named GA-RT) and that for NRT traffic resource allocation (named GA-NRT) are 
described in Sections 4 and 5, respectively. After presenting our simulation results in Section 6, 
we conclude this paper in Section 7. 

2. Related Work 
In this section, we present a short review of the recent works that apply GA-based algorithm to 
resource allocation for wireless networks. Considering a multicell scenario with nonuniform 
traffic distribution in multihop networks, the search for the optimal topology is an NP-hard 
problem. To address the aforesaid issue, [13] proposed a novel sequential genetic algorithm in 
which topologies were encoded as a set of chromosomes and special crossover and mutation 
operations were proposed. Both high performance improvements in the system and fast 
convergence compared with exhaustive search were shown in the numerical test. In CRNs, to 
mitigate the impact of spectrum usage termination and switching, minimum interference 
robust topology construction (MIRTC) is a critical problem. In [14], MIRTC was formulated 
as an integer programming problem and was addressed by a genetic-algorithm-based channel 
assignment (GACA) scheme, which could construct a robust CR topology while minimizing 
interference. In [15], based on genetic algorithm an adaptive intelligent task mapping together 
with a scheduling scheme was proposed to provide a real-time guarantee for parallel 
processing in a multihop wireless network. Furthermore, to alleviate power scarcity of a 
multihop wireless network, a hybrid fitness function was devised and embedded in the 
algorithm to extend the overall network lifetime. Studied in [16] was NP-hard reinforced 
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backbone network deployment problem, with the practical consideration of the limitation of 
available backbone nodes and the enforcement of backbone network connectivity. In that work, 
GA was treated as the optimal solution to find the performance bound of the proposed 
heuristic algorithm. In [17], with a goal of maximizing the service provider’s revenue taking 
into consideration user churn behavior, the authors studied power constrained discrete rate 
allocation (PC-DRA) problem in a CDMA data network. Due to its proved NP-Complete 
complexity, two GA-based algorithms were proposed to solve the problem. Considering a 
cochannel deployment of femtocells in a macrocell network, [18] formulated a multiobjective 
optimization problem with the objectives of maximizing the throughput of all users and 
increasing the power efficiency of femtocell base stations. The authors solved the problem by 
using nondominated sorting genetic algorithm version II. In [19], GA-based approach was 
combined with Karush-Kuhn-Tucker (KKT)-driven approach to solve the joint 
power-subcarrier-time intra-cluster resource allocation problem in wireless mesh networks, 
which was proved as an NP-hard problem. 

3. System Model 
In a multihop CMN as considered in [1], heterogeneous traffic is characterized by two classes 
of coexisting traffic, namely real-time traffic and non-real-time traffic. The network is aimed 
at supporting QoS provisioning and service differentiation for both types of traffic. The 
important symbols defined in [1] and reused in this paper are summarized in Table 1. 
 

Table 1. Summary of Important Symbols 
Symbol Definition Symbol Definition 

N Number of nodes  M Number of channel 

RTΩ  
( RTΘ ) 

Set of nodes (links) transmitting 
RT flows 

NRTΩ  
( NRTΘ ) 

Set of nodes (links) transmitting 
NRT flows 

RTx  
( NRTx ) 

Channel allocation matrix 
,

,[ ]
RT RT RT

m l
RT i j Mx Ω ×Ω × ×Λ=x 

 
( ,

,ˆ[ ]
NRT NRT NRT

m l
NRT i j Mx Ω ×Ω × ×Λ=x )  

where ,
, =1m l

i jx ,
,ˆ( 1)m l

i jx = means that 
channel m of link (i, j) is allocated 
to RT (NRT) flow and 0 otherwise 

RTp  
( NRTp ) 

Power allocation vector 
[ ]

RT

m
RT n Mp Ω ×=p   

( ˆ[ ]
NRT

m
NRT n Mp Ω ×=p )   

denoting the power allocated to 
RT (NRT) flows on each channel 
of nodes in RTΩ  ( NRTΩ ) 

Pmax Maximum transmit power iΓ  Set of available channels at node i 

RTΛ  
( NRTΛ ) 

Set of RT (NRT) traffic flows, 
including both the ongoing and 
newly arrived ones 

,i jΓ  Set of commonly available 
channels between nodes i and j  

Δ Interference cushion at a receiver 
of RT flow or the tolerable inter- 
ference caused by nodes in NRTΩ  

ˆ
iΓ  Set of channels allocatable to NRT 

flows at node i after resource 
allocation for RT flows  

,
m
i jg  Channel gain from node i to node  

j on channel m îP  Power allocatable for NRT flows 
at node i after resource allocation 
for RT flows  
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, ( )m
i jr γ  Mean effective transmission rate 

of channel m of link (i, j) given 
received SINR γ   

, ( )m
i j RTγ p

 

The received SINR on channel m 
of link (i, j) given RT flow’s 
power allocation vector RTp  

R(l) Minimum rate requirement for RT 
flow l 

,ˆ ( )m
i j NRTγ p

 

The received SINR on channel m 
of link (i, j) given NRT flow’s 
power allocation vector NRTp  

r(l) NRT flow l’s transmission rate lρ  Route path of flow l 

Ψ  Rate vector of NRT flows 
1[ ( )]

NRT
r l × Λ=Ψ   

, , ,( )RT RT RTi jC Λx p

 
A function representing the total 
radio resource link (i, j) consumed 
for RT flows, given channel 
allocation matrix RTx , power 
allocation vector RTp , and set of 
RT traffic flows RTΛ  

 
In this paper, we consider slot-based resource allocation, integrating functions, including 

joint access control, and channel and power allocation, via the following two optimization 
problems. For more details, interested readers are suggested to refer to [1]. Specifically, RT 
traffic is allocated channel and power resource ahead of NRT traffic, due to its high priority. 
For the RT flows, we try to serve as many RT flows as possible. If there are too many RT flows 
as compared with the amount of network resources, we adopt the strategy of 
first-in-first-served (FIFS) which means the RT flow that arrived last is ignored and so on. 
Once the network resources are sufficient for RT flows, we try to minimize network-wide 
resources consumed by RT flows while guaranteeing their data rates, thus leaving as many 
network resources as possible for NRT flows to boost background throughput. Resource 
allocation for RT flows is formulated as: 

, ,( , ),
OP1: min , ( , , )( , )

RTRT RT RT
RT RT RT i j RT RT RTi j

f C
∈ΘΛ

Λ = Λ∑x p
x p x p                    (1a) 

1 2

1 2

, ,
, ,s.t.   1,  ,  RT RT

RT RT

k jm l m l
k n n j RT nl l

x x n m∈Ω ∈Ω

∈Λ ∈Λ
+ ≤ ∀ ∈Ω ∀ ∈Γ∑ ∑                            (1b) 

,

,
, , ,( ( )) ( ),  , ( , )

i j

m m m l
i j i j RT i j RT lm

r x R l l i jγ ρ
∈Γ

≥ ∀∈Λ ∀ ∈∑  p                               (1c) 

max ,  
n

m
n RTm

p P n
∈Γ

≤ ∀ ∈Ω∑                                                                     (1d) 

{ },
, ,0,1 ,  0,  ( , ) , , , m l m

i j n RT RT RT i jx p i j n l m∈ ≥ ∀ ∈Θ ∀ ∈Ω ∀ ∈Λ ∀ ∈Γ    (1e) 

where (1a) is the cost function representing the total radio resources, including channel 
RTx and power  RTp , consumed by the RT flows in RTΛ , (1b) describes that any channel of a 

node can be used to either transmit or receive one flow from one neighboring node, (1c) means 
that the actual flow rate must be greater than the minimum rate requirement R(l) for this RT 
flow, with , ( )m

i j RTγ p  representing the received SINR (taking the maximum interference from 
the NRT flows into account) on channel m  of link ( , )i j given RT flows’ power allocation 

RTp  and , ( )m
i jr γ  the mean effective transmission rate of the same channel given received SINR 

γ (for more details, see [1]), (1d) is the power constraint which means that the total power at a 
node is limited, and (1e) gives the range of each optimization variable. 

Due to the fact that the NRT flows are assigned with a low priority, we only allocate 
remaining allocatable channel and power to the NRT flows. When allocating resources to the 
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NRT flows, we adopt the strategy of best effort, which means that we try to use up all 
remaining resources to boost the overall throughput of the NRT flows. With the objective of 
maximizing throughput, we formulate the optimization problem for the NRT flows as: 

, ,
( )OP2 : max , , ( )

NRTNRT NRT
NRT NRT l

r lh
∈Λ

=∑x p Ψ
x p Ψ                                              (2a) 

1 2

1 2

, ,
, ,

ˆˆ ˆs.t.   1,  ,  NRT NRT

NRT NRT

k jm l m l
k n n j NRT nl l

x x n m∈Ω ∈Ω

∈Λ ∈Λ
+ ≤ ∀ ∈Ω ∀ ∈Γ∑ ∑                (2b) 

,

,
, , ,ˆ ˆ ˆ( ( )) ( ),  ,  ( , )

i j

m m m l
i j i j NRT i j NRT lm

r x r l l i jγ ρ
∈Γ

≥ ∀ ∈Λ ∀ ∈∑ p       (2c) 

ˆ
ˆˆ ,  

n

m
n n NRTm

p P n
∈Γ

≤ ∀ ∈Ω∑                                                     (2d) 

,
ˆˆ ,  , \m

NRT

m m
u n u RT n nu

g p n m
∈Ω

≤ ∆ ∀ ∈Ω ∀ ∈Γ Γ∑                          (2e) 
,

,

,

ˆ ˆ{0,1},  0,  ( ) 0
ˆ( , ) ,  ,  ,  

m l m
i j n

NRT NRT NRT i j

x p r l

i j n l m

∈ ≥ ≥

∀ ∈Θ ∀ ∈Ω ∀ ∈Λ ∀ ∈Γ
                  (2f) 

where NRTx , NRTp , and 1[ ( )]
NRT

r l × Λ=Ψ are optimization variables, corresponding to channel 

allocation, power allocation, and end-to-end flow transmission rate, respectively, with r(l) 
being the transmission rate of NRT flow l and defined as the lowest rate on all hops of flow l, 
(2b) is the channel allocation constraint implying that any channel of a node can be used to 
either transmit or receive one traffic flow from one neighboring node, (2c) means that the 
transmission rate over each hop of an NRT flow must be no less than the flow’s end-to-end 
transmission rate, (2d) is the power constraint which means that the total power at a node is 
limited to the remaining power after the allocation for the RT flows, (2e) denotes that the 
interference from the NRT flows to any RT flow cannot be greater than the tolerable 
interference ∆ (i.e., the interference cushion), (2f) gives the range of each optimization 
variable. Although here we adopt a two-step approach to decouple the resource allocation for 
the two types of coexisting RT and NRT traffic, resource allocation for each of them is 
interrelated with each other through interference cushion involved constraints (1c) and (2e). 

Since ,
,
m l
i jx  and (1c) in OP1 are integer variable and nonlinear constraint (for more details, 

see [1]), respectively, OP1 is a mixed-integer nonlinear programming (MINLP), which is 
NP-hard in general [20]. Similarly, we can find that OP2 is also an MINLP problem. Since GA 
has been shown to be an effective way in finding the global optimal solution [11, 12], we will 
present the application of GA in seek of the solution that can achieve the optimum, i.e., the 
performance bound of the network. 

4. GA-based RT Traffic Resource Management 
Due to the high priority, we first allocate resources to RT traffic. Accordingly, in this section, 
a GA-based algorithm (named GA-RT) is firstly proposed to solve the RT traffic resource 
allocation problem formulated as OP1. It starts with an initial population of individuals 
characterized by chromosomes, and then improves the quality of the population through 
evolution. In each generation, three operations are carried out one by one to yield a new 
population, which are: 1) selection; 2) crossover; and 3) mutation. Due to the multiple 
complex constraints of the optimization problem, novel approaches are designed to facilitate 
the implementation of the proposed GA-based algorithm. In the following, we first explain the 
encoding scheme on which the algorithm is based, and then introduce our design for each of 
the aforesaid operations. 
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A. Encoding Scheme 
Before the resource allocation, the gateway node which plays the role of resource manager, 

needs to collect sensing results and traffic demands in the network [1]. The results about all nl 
available links in the network in current slot are recorded in a matrix 
chromosomes_format_info (see Fig. 1). Specifically, the information on each link, namely, 
the sender and the receiver of this link, and the number of available channels and that of flows 
allocated over this link are recorded in sender, receiver, available_chl_num, and flow_num, 
respectively. Besides, the index of available channels and that of flows over each link are 
recorded in matrices available_chl_idx and flow_id, respectively. The collected information 
facilitates the following coding for chromosomes. 

 
Link 1 Link 2 Link nl… 

sender
receiver

flow_num
available_chl_num

 
Fig. 1. The structure of chromosomes_format_info 

 
A chromosome or an individual of the population corresponds to a channel-power 

allocation that needs to be optimized. It is coded as a vector shown in Fig. 2, where i
chln  

denotes the number of available channels over available link i. Moreover, each available 
channel of a link should be allocated to at most one single flow with constrained transmit 
power for the sender. 

 

link 1 link 2
Population

link nl

available channel 1

sender
Qpop

… 

receiver
flow_index

power

1pop
2pop

available channel 2 available channel    ichln

Chromosome
... ...link i

...

 
 

Fig. 2. A genetic representation of a set of feasible solutions to the optimization problem 

 

B.  Initialization 
To start the GA we need to set up an initial population of a number of chromosomes. In Fig. 

2, Q chromosomes are generated. For OP1, the initialization process includes both channel and 
power allocations. Normally, both the allocations in an initial solution should be generated 
randomly. But, in this case, due to the channel constraint (1b) and the rate requirement (1c), 
total randomness causes the initialization to fail frequently, leading to many attempts, which 
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reduces the efficiency of the algorithm significantly. To address this issue some novel 
strategies are adopted when allocating channel and power. 
  Considering the interference between RT flows, first we finish channel allocation (i.e., flow 
assignment) for all links, and then allocate power to all channels with flow assignment. To 
ensure sufficient randomness, we allocate channel to different chromosomes in a random order 
of links. Further, for any chromosome, when allocating channel, we record the used channels 
at each node, and only allocate unused channels in order to satisfy (1b). For any link (say link 
i), a necessary condition for a successful channel allocation is i i

flow chln ξ≤  where i
flown  and 

i
chlξ ( i

chln≤ ) denote the number of flows and the number of allocatable channels on link i, 
respectively. Specially, if i i

flow chln n> , the channels are definitely insufficient and the RT flow 
that arrived last should be suspended. Besides, to support all the flows on link i, each flow is 
allocated a channel firstly. For the remaining unused channels on link i, we allocate each of 
them randomly to one of the flows on the link, with probability pinit. Accordingly, the 
probability that this channel is not used is (1 )initp− .  

When the channel allocation is successful, we allocate power to the channels in use. Due to 
the rate requirement (1c), we find that, in contrast to random power allocation, equal power 
allocation is more likely to satisfy (1c). Thus we count the number of times each node is used 
as a sender to transmit RT flows and equally allocate power to the channels that have the same 
sender, so that (1d) is satisfied. However, if equal power allocation meets requirement (1c), to 
generate sufficient randomness we reduce the power used on each channel by a random value 
up to d1 (in percent) which is preset, otherwise we regard power allocation as failed and try to 
reallocate channel again and begin to delete RT flows after certain number of attempts. We 
keep reducing the power for at most pN  times until (1c) is unsatisfied and use the latest 
feasible result, because using as less power for RT flows as possible can reserve more 
available resources for NRT flows in general. 

The initialization stops if the total Q chromosomes are generated. If some chromosomes 
are failed to be generated after a sufficient number of generation attempts but at least one 
chromosome has been initiated, we can randomly duplicate the required chromosomes from 
those that have been initiated. It should be noticed that, if the network resources are too limited, 
OP1 can be infeasible and therefore it is possible that no chromosome can be initiated in this 
case. The algorithm designed for initialization is summarized in Algorithm 1, which consists 
of a triple-nested loop (see Lines 3, 5, 30). Notice that the outmost loop at Line 30 corresponds 
to the case that we apply FIFS to reduce the number of RT flows due to the limited amount of 
network resources. Besides, in the innermost loop, three sequential subloops are enclosed, for 
flow assignment (Line 6), equal power allocation to all channels with flow assignment at any 
nodes (Line 18), and power reduction attempt (Line 22), respectively. Therefore, the time 
complexity of the algorithm is on the order of ( )( ) | |t c l p RTO N N n NM N+ + Λ , where tN , cN , 

N , and M  are the maximum number of generation  attempts (defined in Line 3), the 
maximum number of channel allocation attempts (defined in Line 5), the number of nodes and 
that of channels in the network, respectively.  
 
 
 
 



2782 Shan et al.: Genetic Algorithm based Resource Management for Heterogeneous Services in Cognitive Mesh Networks 

Algorithm 1: Initialization in GA-RT 
1     Input: chromosomes_format_info, available_chl_idx, flow_id, Q, Nt, Nc, Np 
2     Initiate q = 0; 
3     For generation_attempt = 1 to Nt  //  Nt=max_attempt 
4         Set chl_alt_attempt = 1 and generate a random order of links π(i); 
5         While chl_alt_attempt ≤  Nc  //  Nc=max_chl_alt_num 
6               For link π(i)  = 1 to nl 
7                     Identify the number and index of the allocatable channels on link i; 
8                     If i i

flow chln ξ≤   
9                          Randomly allocate each flow one basic channel; 
10                        If there are still rest unused channels, allocate each of them randomly to one 

of the flows on the link, with probability pinit; 
11                    Else if i i

flow chln n>  
12                         Suspend the last arrived RT flow and go to Line 3 to restart initialization; 
13                    Else  
14                          Fail to generate a solution and chl_alt_attempt = chl_alt_attempt +1; 
15                          Break and go to line 5 to reallocate channel for the solution; 
16                    End 
17              End 
18               For a solution with successful channel allocation, first try equal power allocation to 

all channels with flow assignment at any nodes; 
19              If equal power allocation dissatisfies (1c) 
20                   Fail to generate a solution and chl_alt_attempt = chl_alt_attempt +1; 
21              Else 
22                    Keep reducing the power used on each channel by a random value up to d1 until  

(1c) dissatisfies or power has been reduced for Np times; 
23                   Allocate each channel the latest feasible power result, update q= q+1;  
24                   Break; 
25              End 
26        End 
27        Break if q= Q; 
28   End 
29   If no solution generates  
30        Suspend the last arrived RT flow and go to Line 3 to restart initialization; 
31   Else if q<Q 
32        Randomly duplicate the required solution(s) from those that have been initiated; 
33   End 
34   Output: 1{ }Q

i ipop =    

C. Fitness Function and Selection Operation 
During each successive generation, chromosomes that are fit enough are selected to 

survive and to breed a new generation. The well-known Roulette-Wheel scheme [21] is used 
here, where each solution is picked with the probability related to a fitness function of the 
current solution. However, as the Roulette-Wheel scheme cannot be directly applied to a 
minimization problem such as OP1 and negative fitness values are not allowed (thus simply 
maximizing the negative value of (1a) is invalid), it is necessary to map the objective function 
(1a) to an appropriate fitness function form. The following transformation is considered [22] 
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max max

max

( , ), ( ,, )
( , )

0, ( , )
,

,
,

RT RT RT RT RT RT
RT RT RT

RT RT RT

C f f C
F

f C
Λ Λ

Λ
− <

=  ≥Λ

x p x p
x p

x p
             (3) 

where Cmax is the maximum value of the objective function (1a) till current generation. More 
specifically, we define the objective function ( , ),RT RT RTf Λx p  in OP1 as: 

,
,

, , , ,
,( , ) m l m

RT RT RT i j n
i j m l n m

xf p= +Λ ∑ ∑ x p .                                              (4) 

After fitness calculation for the Q solutions, the fitness function of popi is recorded as Fi. 
Following elitism strategy [23], we reserve the best chromosome satisfying bestpop =  

1
arg max ii Q

F
≤ ≤

 for the next generation directly. To improve the performance of the GA, the best 

chromosome will be kept throughout this generation. For the other (Q-1) solutions in the next 
generation, we randomly pick them from the current generation. According to the Roulette- 
Wheel scheme, the probability that popi in the current generation is picked is 

1

Pr( ) i
i Q

ii

Fpop
F

=

=
∑

.                                                      (5) 

The algorithm designed for selection operation is summarized in Algorithm 2. The time 
complexity of the algorithm depends mainly on the operation to find the best chromosome 
(Line 2) and the chromosome selection between Lines 4 and 11, thus is on the order of 

2( ) ( ( ))chlO Qn Q O Q M Q+ = + , where 
1

ln i
chl chli

n n
=

=∑  is the number of total available 
channels on all links that we have to check to derive Fi for a chromosome. 

Algorithm 2: Selection operation in GA-RT 
1     Input: 1{ }Q

i ipop = , 1{ }i
Q
iF = , Cmax, Q 

2     Find 
[1, ]

arg maxbest ii Q
pop F

∈
=  and assign max max 1

max{ ,max }ii Q
C C F

≤ ≤
= ; 

3     Normalize iF  by 
1

ˆ Q
i i ii

F F F
=

= ∑ ; 
4     For i = 1 to Q-1 
5            Generate a random value [0,1]r∈ ; 
6            For  j = 1 to Q 
7       If 1

1 1
ˆ ˆj j
i ii i

F r F−

= =
< ≤∑ ∑  

8                      Select popj to generate the next generation by next
i jpop pop= ; 

9                  End 
10          End 
11    End 
12    For i = 1 to Q-1 
13          Assign next

i ipop pop= ; 
14    End 
15    Keep the best solution by Q bestpop pop= ; 
16    Output: 1{ }Q

i ipop = , Cmax, bestpop  

D. Crossover Operation 
To produce next generation, single point crossover method is applied in our algorithm. For 

solutions in current population, every two of adjacent ones make up a group (denoted as 
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parent1 and parent2) and go through crossover operation with probability pco. At the beginning 
of crossover, we randomly select link k as a crossover point. Two children solutions denoted as 
children1 and children2 are generated by firstly duplicating the channel-power allocation of the 
links before link k from parent1 and parent2, respectively, i.e.,  

(  1:  ) (  1:  ),   1,2i ichildren link link k parent link link k i= =                    (6) 
and then exchanging the channel allocation of the remaining parts from the two parents, i.e., 

1 2
_ (  1:  ) _ (  1:  )children l parent lflow assignment link k link n flow assignment link k link n+ = +   (7) 

2 1
_ (  1:  ) _ (  1:  )children l parent lflow assignment link k link n flow assignment link k link n+ = + . (8) 

Obviously, the first step of direct duplication will never violate channel constraint (1b); 
however, the second step is prone to make mistakes. Therefore, any violation of (1b) should be 
detected in the exchange process. If so, a new crossover point should be reselected.  

The exchange of power allocation is implemented after a successful exchange of channel 
allocation. The blending method for power exchange follows the way for continuous value 
[23]. If the power levels allocated to parent1 and parent2 at the same channel (say channel j) 
over the same link (say link q) are

1
( , )parentp q j  and 

2
( , )parentp q j , respectively, the power 

levels for their children at the same channel over the same link are 
1 1 2
( , ) ( , ) (1 ) ( , )children parent parentp q j p q j p q jα α= × + − ×                             (9) 

2 1 2
( , ) (1 ) ( , ) ( , )children parent parentp q j p q j p q jα α= − × + ×                           (10) 

where 1, 2, ,{ }lk kq n+ + …∈ , and α  is a random value on the interval [0, 1]. However, 
remedy might be still needed if power constraint (1d) is violated with such power blending. If 
so, we can re-adjust power allocation by taking into account both the maximal power a node 
can use and the allocated power of the link sender,  

1 1

max ,
1 1 1

( , ) ( , ) ( , ) ,  1,2
u
chl

i i i

nq j

children u q children children i
u v v

p q j P x p u v p q v iβ
− −

= = =

 
= − − =  
 

∑∑ ∑        (11) 

where ,u qx  is an indicator which is equal to one if links u and v have the same transmitter and 
zero otherwise, and iβ  is a random value on the interval [0, 1]. 

After power allocation, we check whether or not the children solutions satisfy rate 
requirement (1c). If not, we can first try different power allocations for a number of attempts 
and then turn to change the crossover position if necessary. Finally, if all possible crossover 
positions are used and failed, or we skip crossover operation at the beginning (with probability 
(1-pco)), we duplicate parent solutions directly. But, the best chromosome is kept from 
crossover due to elitism strategy. The algorithm for crossover operation is summarized in 
Algorithm 3. For the time complexity of the algorithm, we know that: 1) for a population of 
size Q the crossover operation is executed Q/2 times (Line 2); 2) to finish channel exchange, 
any channel crossover that violates (1b) initiates a new crossover link point selection (Line 10), 
thus contributing at most ln M  times of channel exchanges; and 3) to finish power exchange, 
any power crossover that violates (1c) initiates a new power allocation for every channel over 
the links after crossover link point, as long as the limit of power allocation attempts pN  is not 
reached (Line 14), thus generating at most p lN n M times of power allocations. To sum up, the 
time complexity of Algorithm 3 is thus on the order of 

( )) ( )2 ( l p l l pO Q n M N n M O Qn MN⋅ + = . 
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Algorithm 3: Crossover operation in GA-RT 
1     Input: chromosomes_format_info, flow_id, 1{ }Q

i ipop = , bestpop  
2     For every two of adjacent solutions pop2i-1 and pop2i 
3           parent1= pop2i-1;  parent2= pop2i; 
4           Generate a random value [0,1]r∈ ;  
5           If r<pco  
6                Select a crossover point for this parent pair and denote it as link k; 
7                Duplicate genes by (  1:  ) (  1:  ),   1,2i ichildren link link k parent link link k i= = ; 
8                Exchange the channel allocation by

1
_ (  1:  )children lflow assignment link k link n+ =  

                 
2

_ (  1:  )parent lflow assignment link k link n+ and
2

_ (  1:  )children lflow assignment link k link n+ =  
                 

1
_ (  1:  )parent lflow assignment link k link n+ , while check whether (1b) is violated; 

9                If (1b) is violated for any channel and not all crossover points have been tested 
10                    Go to line 6; 
11              Else if crossover still fails after trying all crossover points  
12                    Go to line 28; 
13              End 
14              For power_alt_attempt = 1 to NP  // NP = max_power_alt_num 
15                     For link q=k+1 to ln  
16                           For link q’s available channel j = 1 to q

chln  which has flow assignment 
17                                  Generate α  and exchange power allocation by  
                                     

1 1 2
( , ) ( , ) (1 ) ( , )children parent parentp q j p q j p q jα α= × + − × , 

                                     
2 1 2
( , ) (1 ) ( , ) ( , )children parent parentp q j p q j p q jα α= − × + × ; 

18                                  If (1d) is violated for children i 
19                                        Generate iβ  and re-adjust power allocation by 

                                           
1 1

max ,
1 1 1

( , ) ( , ) ( , )
u
chl

i i i

nq j

children u q children children i
u v v

p q j P x p u v p q v β
− −

= = =

 
= − −  
 

∑∑ ∑ ; 

20                                  End 
21                            End 
22                      End  
23                      If both children solutions satisfy (1c) 
24                           Break; 
25                      End 
26                End 
27          End 
28          If cor p≥  or crossover fails // failed after testing all crossover points or trying the 

// maximum number of power allocation attempts  
Duplicate parent solutions directly; 

29           End 
30     End 
31     Keep the best chromosome by Q bestpop pop= ; 
32     Output: 1{ }Q

i ipop =  
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E. Mutation Operation 
To maintain genetic diversity and increase convergence rate, mutation is performed to alter 

some positions or genes in chromosomes randomly. But the solution with the highest fitness 
(i.e., popbest) is kept from mutation. For the other solutions, we alter the channel-power 
allocation in them with probability pmut, which means that totally ( 1)mut chlp n Q× × −    
positions are changed in mutation operation. 
  When mutating, we first randomly choose a mutation position. Let mRT denote the index of 
the channel related to the selected position. We record the channel and power allocation of 
other positions in this solution. Under constraint (1b), if the channel at mRT is not usable, we 
regard mutation in mRT as finished. Otherwise, we check whether or not current flow on this 
channel can quit by setting the power over channel mRT as zero and checking rate requirement 
(1c). If the requirement is not satisfied, we also consider this mutation as finished. Otherwise, 
we randomly choose one of the flows on the link including 0 which means this channel is not 
to be used after mutation.  

Then we update power allocation. If the power over channel mRT is nonzero before 
mutation, we keep reducing the power by a random value up to d2 (in percent) which is preset 
until rate requirement (1c) is not satisfied or we have tried at most Np times, and use the last 
feasible power result. However, if the channel is not used before, we firstly allocate a random 
part of remaining power to this node and check (1c). On condition that (1c) is unsatisfied, we 
again try to reduce the power by a random value up to d2 (in percent) until we have tried at 
most Np times. If the attempt fails or there is no remaining power at first, we withdraw flow 
assignment. The algorithm for mutation operation is described in Algorithm 4. The time 
complexity of the algorithm depends mainly on the number of mutation attempts (see Line 4) 
and that of power adjustment attempts Np (see Lines 14 and 20) and is thus on the order of 

( ( 1) ) ( )mut chl p pO p n Q N O MQN× × − =   .  

 
Algorithm 4: Mutation operation in GA-RT 
1     Input: chromosomes_format_info, available_chl_idx,  flow_id, 1{ }Q

i ipop = ; 
2     Find bestpop  from 1{ }Q

i ipop = ; 
3     Exclude bestpop  from further mutation process; 
4     For i = 1 to ( 1)mut chlp n Q× × −    
5           Randomly choose a mutation position mRT, and record the channel and power   

allocation of other positions in this solution; 
6 If channel at mRT is not usable under constraint (1b)  
7                This mutation attempt ends; 
8  Else check whether (1c) will dissatisfy if setting the power over channel mRT as zero 
9                 If so this mutation attempt ends;  
10         End 
11 Randomly allocate one of the flows on the link (including 0) to channel mRT; 
12 If a flow is assigned to channel mRT  
13               If the power over channel mRT is nonzero before mutation 
14                    Keep reducing the  power by a random value up to d2 until (1c) is unsatisfied  

or we have tried at most Np times; 
15                    Use the last feasible power result; 
16               Else if the remaining power is zero 
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17                    Withdraw flow assignment; 
18               Else allocate a random part of the remaining power to this node and check (1c);  
19             If (1c) is unsatisfied 
20                          Try to reduce the power by a random value up to d2 for at most Np times; 
21                          If (1c) continues to be unsatisfied until the preset number of attempt times 

is reached, then withdraw flow assignment; 
22                      End 
23                End 
24          End  
25    End 
26    Output: 1{ }Q

i ipop =  

To sum up the GA-RT algorithm, it is composed of an initialization operation and several 
iterations to improve the quality of the population. Each iteration includes three operations: 
selection, crossover, and mutation. As such, the time complexity of GA-RT is on the order of 

( )( )( ) | | ( )t c l p RT l ppT Q M Q MQO N N n NM NN Qn MN+ + +++ + Λ , where T is the 

generation number. 

5. GA-based NRT Traffic Resource Management 
After allocating resource to RT traffic, to solve the NRT traffic resource allocation problem 
formulated as OP2, we design a GA-based algorithm (named GA-NRT), similar to the one 
proposed for RT traffic. However, as OP2 is to maximize the overall throughput of all NRT 
flows and more constraints (e.g., interference constraint (2e)) appear in the optimization 
problem, the algorithm proposed for OP1 cannot be directly applied to OP2. In the following, 
we introduce our design in applying GA to solve OP2 while mainly focusing on the difference 
between GA-RT and GA-NRT. It is also worth mentioning that the encoding scheme for 
GA-RT can be reused for GA-NRT. 

A. Initialization 
To increase throughput of all NRT flows, in the initialization of GA-NRT we try to use up 

all remaining resources that are unoccupied by RT flows. Moreover, for different 
chromosomes, we allocate all remaining channels to NRT flows one by one in a random flow 
permutation order, which helps to generate sufficient randomness. When allocating these 
channels, in each allocation round we only assign at most one usable channel to each hop of a 
flow. Further, we separate disconnected NRT flows from connectable or connected NRT 
flows, and keep allocating channel to connectable or connected NRT flows until all of them 
cannot be allocated more channels. A flow will be marked as disconnected if channel 
allocation fails on a link of the flow before it achieves an end-to-end connection. The channels 
allocated to a disconnected flow should be withdrawn and reused by other flows with certain 
probability. 

When channel allocation finishes, we do power allocation under constraints (2d) and (2e). 
To ensure randomness under constraint (2d), for any sending node, with probability peq we 
equally allocate the remaining power to the channels with NRT flow assignment, which is 
similar to the equal power allocation adopted in GA-RT’s initialization. On the other hand, 
with probability (1-peq) we randomly allocate part of the remaining power to the channels with 
NRT flow assignment. Besides, if RT flows pose nonzero interference constraint on the 



2788 Shan et al.: Genetic Algorithm based Resource Management for Heterogeneous Services in Cognitive Mesh Networks 

transmitters of NRT flows (i.e., 0∆ ≠ ), we might need to further reduce the power allocation 
by taking constraint (2e) into account. Thus we can ensure that both constraints are satisfied 
and we use as many channel and power resources as possible yet still generate enough 
randomness. 
B. Fitness Function and Selection Operation 

Similar to GA-RT, the selection operation of GA-NRT is based on the Roulette-Wheel 
scheme. The only difference lies in the fitness function. Because OP2 is to maximize the total 
NRT traffic throughput ( ), , ( )

NRT
NRT NRT l

r lh
∈Λ

=∑x p Ψ , where r(l) is the transmission rate of 

NRT flow l and is defined as the lowest rate on all hops of flow l, the fitness function 
,( ),NRT NRTH x p Ψ  for GA-NRT can follow the form [21] 

min min

min

, , , ,
, ,

,
( ) , ( ) 0

( )
0, ( , ) 0

NRT NRT NRT NRT
NRT NRT

NRT NRT

h C h C
H

h C
+ + >

=  + ≤

x p Ψ x p Ψ
x p Ψ

x p Ψ
          (12) 

where Cmin is the minimum value of the objective function (2a) till current generation. Again, 
following elitism strategy, the best chromosome will be recorded and kept throughout the 
generation. 

C. Crossover Operation 
The crossover operation of GA-NRT is designed as the same for GA-RT in terms of the 

crossover of spectrum resource. The difference lies in the crossover of power allocation, 
because of the newly added interference constraint (2e). After channel crossover, the power 
levels for the children solutions at an available channel (say channel j) of a link (say link q) 
after the crossover point (say link k) are derived (denoted as

1
( , )childrenp q j  and 

2
( , )childrenp q j  

respectively) through (9) and (10). If ( , )
ichildrenp q j  is too large to satisfy (2d) and (2e), we 

re-adjust it by 

( )

( ) ,

ˆ , 0

( , )   ˆmin , max , 0i

j
jRT
NRT

t q i

children j
t q i

P

p q j
P gς σ

σ ς

δ

δ
∈Ω

∈Ω

 ′ × ∆ =
   =    ′ ∆ × ∆ ≠  

     
∑

               (13) 

where 1, 2, ,{ }lk kq n+ + …∈ , iδ  is a random value on the interval [0, 1], and ( ) ( )
ˆ ˆ
t q t qP P′ =  

1 1

,
1 1 1

( , ) ( , )
u
chl

i i

nq j

u q children children
u v v

x p u v p q v
− −

= = =

− −∑∑ ∑ denotes the remaining power the sender of link q can 

use for NRT traffic but excluding the power this node has already used for NRT traffic in links 
1 to q, with t(q) representing the sender of link q and ,u qx an indicator implying whether or not 
links u and q have the same transmitter. 

D. Mutation Operation 
The mutation operation in GA-NRT starts with fitness calculation, which identifies bestpop  

and further restricts the range of mutation positions in the remaining solutions. Similar to the 
mutation in GA-RT, the one here at a specific position mNRT includes both channel and power 
reallocation. To reallocate channel, we shall find out whether or not the channel at a mutation 
position can be used under channel constraint (2b). If so, to utilize the channel, we also need to 
know whether there is enough remaining power under power constraint (2d). Besides, if the 
channel at position mNRT is used by a flow before mutation, we check whether this channel is 
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the only channel that the flow uses at this hop as well. If the channel is unique, it cannot be 
reassigned to the other flow, or the original flow will break at this hop and its rate will fall into 
zero. Finally, under the circumstance that the channel at position mNRT can be allocated to the 
other flow, we randomly reallocate it to one of the flows on the link including 0 which means 
this channel is not to be used after mutation operation.  

Power reallocation is implemented for any channel with successful flow reassignment. By 
considering the power constraints (2d) and (2e), power reallocated for a channel (say channel j) 
of a link (say link q) in a solution (say popi) can be given by 

( )

( ) ,

ˆ , 0

( , ) ˆmin , max , 0i

j
jRT
NRT

t q

pop j
t q

P

p q j
P gς σ

σ ς

ρ

ρ
∈Ω

∈Ω

 ′′ × ∆ =
   =    ′′ ∆ × ∆ ≠  

     
∑

                    (14) 

where ρ  is a random value on the interval [0, 1], ( ) ( ) , ,
1 1

ˆ ˆ ( , )
u

l chl

i

n n

t q t q u q v pop
u v

P P y p u v
= =

′′ = −∑∑  is the 

remaining power the sender of link q can use for NRT traffic but excluding the power this node 
has already allocated to the channels of NRT traffic without requiring mutation, with 
indicator , ,u q vy representing whether or not links u and q have the same transmitter and channel 
v at link u requires mutation. 

 For the time complexity of the GA-NRT algorithm, given the same generation number and 
the same order for the number of RT flows and that of NRT flows, it should not be larger than 
that of the GA-RT algorithm, because iterative power reduction adopted in the initialization 
and mutation operations in GA-RT, to reserve as many power resources as possible, are 
avoided in the counterparts of GA-NRT. Moreover, no NRT flows have to be suspended and 
thus no iterative resource allocation as we do for RT flows is required, which further reduces 
the time complexity of GA-NRT. As such, the overall time complexity of the GA-based 
resource allocation for both RT and NRT flows in CMNs is on the order of that of GA-RT as 
derived in Section 4. 

6. Performance Evaluation 
We consider a CMN with 9 nodes randomly located in 375m×375m coverage area. The 
spectrum is of 2.5MHz bandwidth and is partitioned into 12 channels, with each having a 
bandwidth of 208.33kHz. The impact of primary activity is studied in terms of the mean idle 
time of each channel. In the simulation, the mean idle time of each channel on any link is set to 
be the same valueλ . The RT and NRT traffic flows are generated according to a Poisson 
process with mean rate set as RTλ  flow/s and 0.5 flow/s, respectively. To restrict the running 
time of the proposed GA-based resource allocation algorithm, we set the maximal number of 
generations in both GA-RT and GA-NRT as 20 and population size as 10. Further, pinit, pco, 
pmut, peq, d1, d2, and Np used in GA-RT and GA-NRT are 0.5, 0.8, 0.1, 5%, 5%, and 2000, 
respectively. Other system parameters are chosen according to [1]. To compare the 
performance of the newly proposed GA-based algorithm, the algorithm proposed in [1], which 
utilizes a two-level decoupling approach (i.e., decouple power allocation from channel 
allocation and channel allocation from link allocation) to allocate channel and then geometric 
program to solve power allocation, and the greedy algorithm adopted in [24] for comparison, 
which is based on greedy channel-link mapping and uniform power allocation, are utilized. 
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We perform the simulation by matlab on an Intel Xeon 3.47GHz machine for 40 times, and 
each run lasts for 20s of network time. The 95% confidence interval is also given.  

Fig. 3 shows the relationship between the mean access ratio of RT flows and the mean idle 
time λ  of each channel given different values of interference cushion. It can be seen that with 
an increase ofλ , the access ratio of RT flows increases for any of the three algorithms, due to 
more opportunities to find an idle channel. Also, the access ratio decreases if the interference 
cushion ∆  increases, since more network resources are reserved for NRT flows. From Fig. 3, 
we can find out that the proposed GA-based algorithm is better than the other algorithms in all 
simulated cases in terms of the mean access ratio of RT flows. For example, when 0∆ =  and 

9λ = , the access ratios with the GA-based algorithm, with the algorithm proposed in [1], and 
with the greedy algorithm are 84.33%, 69.78%, and 56.77%, respectively. Moreover, 
when 0∆ = , the access ratio with the GA-based algorithm is on average 15.79% higher than 
that with the algorithm proposed in [1] and 42.5% higher than that with the greedy algorithm.   

In contrast to the access ratio of RT traffic, Fig. 4 shows the simulation results of the mean 
throughput of NRT traffic. As observed, the throughput of NRT flows with each of the three 
algorithms increases as λ  increases, due to the fact that increasing interference cushion 
reserves more network resources for NRT flows. Obviously, the GA-based algorithm 
performs better than the other two algorithms. When 810−∆ = W and 9λ = s, the throughputs 
with the GA-based algorithm, with the algorithm in [1], and with the greedy algorithm are 
6.50Mbps, 4.67Mbps, and 3.09Mbps, respectively. Moreover, when 0∆ = , the throughput 
with the newly proposed algorithm is on average 39.07% (104.33%) higher than that with the 
algorithm in [1] (the greedy algorithm). However, it is also noteworthy that the throughput 
with the algorithm in [1] at 810−∆ = W is higher than the throughput with the GA-based 
algorithm at 0∆ = . The reason is that, when 0∆ = , GA allocates a large amount of resources 
for RT flows, limiting the remaining resources for NRT flows. Similar observation will be 
made in Fig. 11 when studying the impact of traffic load. 
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Fig. 3. Mean access ratio of RT flows vs. λ  
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Fig. 5. Mean running time of the three algorithms vs. λ  

 

Fig. 5 compares the mean running time of the three algorithms. From the figure, we can 
find out that the mean running time of the algorithm in [1] is two orders of magnitude higher 
than the greedy algorithm but four orders of magnitude lower than the newly proposed 
GA-based algorithm. With an increase of λ , the mean running time increases slightly and 
converges because the network is saturated. Thus, we can conclude that GA improves the 
performance at the cost of time complexity. In addition, Figs. 6-9 show the relationship 
between the average fitting value of allocating resource for RT traffic as well as that for NRT 
flows with the GA-based algorithm and the number of generations, at 3λ = s and 9s, 
respectively. From the figures, we can find out that, GA is easy to converge when λ  is small 
and hard to converge when it is large. The reason comes from the fact that the number of the 
idle channels on all links increases with an increase ofλ , which enlarges the searching space 
accordingly. In other words, for the GA-based algorithm, it is important to select an 
appropriate generation number in order to well balance the tradeoff between performance 
improvement and running time reduction.  
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RT flows vs. number of generations at λ=9s            NRT flows vs. number of generations at λ=9s 

 

Furthermore, we perform simulation to observe the impact of traffic load on the network 
performance by the proposed GA-based algorithm. Fig. 10 shows the relationship between the 
mean access ratio of RT flows and the mean arrival rate RTλ  of RT flows given different 
values of interference cushion. From the figure, we can find that the mean access ratios of RT 
flows with the three algorithms firstly increase then decrease as RTλ  increases. The reason for 
the increase when 0.5RTλ ≤ flow/s is that, as compared with the increased traffic load, the 
network might still have resources to serve a part of the increased RT flows. However, if the 
traffic load further increases, the network tends to be saturated. As such, the increasing RT 
flows are hard to be admitted, making the overall access ratio decline. The access ratio also 
decreases when interference cushion increases, because more network resources are reserved 
for NRT flows. Moreover, the GA-based algorithm obtains the highest access ratio as 
compared with the other two algorithms. For instance, when 0∆ =  and 1RTλ = , the access 
ratios with the GA-based algorithm, with the algorithm in [1], and with the greedy algorithm 
are 62.88%, 54.64%, and 45.99%, respectively. On average, the access ratio with the 
GA-based algorithm is 12.88% higher than that with the algorithm in [1] and 30.36% higher 
than that with the greedy algorithm, if considering 0∆ = . 
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Fig. 11. Mean throughput of NRT flows vs. RTλ  
 

Fig. 11 shows the simulation results of the mean throughput of NRT traffic when the traffic 
load of RT flows changes. In general, the throughput of NRT flows with each of the three 
algorithms decreases as RTλ  increases, because more resources are used by RT flows. To 
boost the throughput of NRT traffic, one can increase ∆  when allocating resource to RT 
traffic, as it reserves more resources for NRT traffic. Noticeably, the throughput with the 
GA-based algorithm decreases more dramatically than the other algorithms when RTλ  
increases. The reason may stem from the fact that due to the superiority of the genetic 
algorithm, when allocating resources to RT traffic, the newly proposed GA-based algorithm is 
able to use up more network resources to admit more RT flows and leaves less network 
resources for NRT traffic. Therefore, the throughput degradation for NRT traffic can be much 
more obvious in the GA-based algorithm. Further, as compared to Fig. 5, similar observation 
on the running time of the three algorithms has been made when simulating the impact of 
traffic load. 
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It is worth mentioning that the proposed GA-based algorithm improves the network 
performance but at the cost of time complexity, which is one of the drawbacks of genetic 
algorithms [11, 12, 23]. To further improve the feasibility of both GA-RT and GA-NRT, 
similar to [19], we can adopt the strategy that combines a GA-based algorithm and a 
low-complexity algorithm (e.g., the one in [1]), via independently obtaining the resource 
allocation solutions using both algorithms and then simply choosing the better one out of the 
two solutions. Another strategy is using the solution of the low-complexity algorithm as an 
initial chromosome of the GA-based algorithm. Obviously, with either strategy, if we reduce 
the generation number of the GA-based algorithm, the time-complexity of the algorithm can 
be reduced; yet, due to the comparison mechanism or elitism strategy used in the GA-based 
algorithm, we can guarantee that the final solution is at least not worse than the one of the 
low-complexity algorithm. In other words, feasibility of the proposed GA-based algorithm can 
be improved if combined with other low-complexity algorithms, but at the cost of a certain 
extent of performance. 

7. Conclusion 
To have an in-depth understanding of the performance of a CMN with heterogeneous services 
as well as to explore the feasibility of any new approach to solve complex resource allocation 
problems in such a network, we have designed a new algorithm based on genetic algorithm to 
address the resource allocation problems studied in [1], which are MINLP. The newly 
designed GA-based algorithm can be treated as the optimal solution, because genetic 
algorithm is usually a robust search method requiring little information to search effectively in 
a large or poorly-understood search space. Novel initialization, selection, crossover, and 
mutation operations are designed such that solutions with enough randomness can be 
generated and converge with as less number of attempts as possible, improving the efficiency 
of the algorithm effectively. The algorithm designed in this paper can provide a 
comprehensive example of designing GA-based algorithm for many other application 
scenarios where similar complex wireless resource allocation problems are formulated. 
Simulation results show the superiority of the newly proposed GA-based algorithm, in 
increasing both the access ratio of RT flows and the throughput of NRT flows. However, it has 
also been found that in a CMN with both the RT and NRT traffic, due to the high priority of RT 
flows, the GA-based algorithm tends to fully utilize network resources to serve as many RT 
flows as possible, leaving fewer resources to NRT flows. Further, simulation results also 
reveal that as compared with algorithm in [1] it is also important to balance the tradeoff among 
QoS provisioning for RT traffic, throughput maximization for NRT traffic, and time 
complexity of a resource allocation algorithm. For the future work, we will optimize the 
design of the proposed GA-based algorithm to further reduce its time complexity. 
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