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UPPER AND LOWER BOUNDS FOR THE POWER OF

EIGENVALUES IN SEIDEL MATRIX

ALI IRANMANESH AND JALAL ASKARI FARSANGI∗

Abstract. In this paper, we generalize the concept of the energy of Seidel

matrix S(G) which denoted by Sα(G) and obtain some results related to
this matrix. Also, we obtain an upper and lower bound for Sα(G) related
to all of graphs with |detS(G)| ≥ (n− 1), n ≥ 3.
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1. Introduction

All of graphs considered in this paper are finite, undirected and simple. Let
G be a graph with vertex set V(G) and edge set E(G). Let A(G) be the (0,1)-
adjacency matrix of G. In 1966, Van Lint and Seidel in [13] introduced a sym-
metric (0,-1,1)-adjacency matrix for a graph G, called the Seidel matrix of G
as S(G) = J − 2A(G) − I, where J is a square matrix which all of entries are
equal to 1. Thus S(G) has 0 on the diagonal and ±1 off diagonal, where -1
indicates adjacency, unless is equal to 1. It is obvious that -S(G) is the Seidel
matrix of the complement of G. Haemers in [10], similar to the normal energy,
defined the Seidel energy Es(G) of G which is the sum of the absolute values of
the eigenvalues of the Seidel matrix. For example consider the complete graph
Kn, its Seidel matrix is I − J . Hence the eigenvalues of S(Kn) are (1-n) and 1
with multiplicity (n-1). So Es(Kn) = 2n− 2. The Seidel matrix of a graph can
be interpreted as the incidence matrix of a design, or as the generator matrix of
an alternative binary code. We refer the reader to [5, 6, 9] for more information
related to eigenvalue and adjacency matrix and their properties.
In section 2, we proceed with the study of generalization of Seidel matrix and
define Sα(G) and we obtain a lower bound for Sα(G), α ≥ 2.
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Section 3 contains a brief summary of KKT method and establishes the relation
between nonlinear programming and upper bound.
In [7], Ghorbani obtained a lower bound for Sα(G), 0 ≤ α ≤ 2. In this section
we obtain an upper bound for Sα(G), α ≥ 2. As for prerequisites, the reader is
expected to be familiar with nonlinear programming. Undefined notations and
terminology from nonlinear programming, can be found in [2, 12].

2. The generalization of Seidel matrix

At first, we define the concept of generalized Seidel matrix and then we obtain
some results related to this concept.

Definition 2.1. Let λ1, λ2, ..., λn be the eigenvalues of the Seidel matrix S(G).
The power of eigenvalues of Seidel matrix S(G) is denoted by Sα(G) and
define as follows:

Sα(G) =
∑n

i=1 |λi|α.

Remark 2.1. If α = 1, then Sα(G) = Es(G); i.e., Sα(G) is a generalization of
Seidel energy of G.

For the proof of the next theorem, we need the concept of conference graph.

Definition 2.2 (Conference matrix [10]). A conference matrix is a square matrix
C of order n with zero diagonal and ±1 off diagonal, such that CCT = (n− 1)I.
If C is symmetric, then C is the Seidel matrix of a graph and this graph is called
a conference graph.

Conference matrices are a class of Hadamard matrices and its have the Hadamard
properties. For more details we refer the reader to [3, 10]. The remainder of this
section will be devoted to the proof of a lower bound for Sα(G) for all α ≥ 2.

Definition 2.3 (Hölder’s Inequalities [8]). Let 1
p + 1

q = 1 with p, q > 1. Then

Hölder’s inequality for the n-dimensional Euclidean space, when the set S is
{1, ..., n} with the counting measure, we have

n∑
k=1

|akbk| ≤ (
n∑

k=1

|ak|p)1/p(
n∑

k=1

|bk|q)1/q

for all X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn) ∈ Rn with equality when |bk| =
c|ak|p−1. If p = q = 2, this inequality becomes Cauchy’s inequality.

Theorem 2.4. Let G be a graph with n vertices, then for all α ≥ 2, n ≥ 3,
Sα(G) ≥ n(

√
n− 1)α and equality holds if and only if G is a conference graph.

Proof. Let λ1, λ2, ..., λn be the eigenvalues of the Seidel matrix S(G), then the
trace of S2(G) is equal

∑n
i=1 λ

2
i = n(n − 1). Let X = (λ2

1, λ
2
2, ..., λ

2
n) and Y =

(1, 1, ..., 1). By the Hölder’s Inequalities, we have |XTY | ≤ ||X||p||Y ||q, 1
p +

1
q =

1; i.e.,
∑n

i=1 λ
2
i ≤ (

∑n
i=1(λ

2
i )

p)1/p(
∑n

i=1 1
q)1/q. But since

∑n
i=1 λ

2
i = n(n − 1),
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we have n(n−1) ≤ (
∑

λ2p
i )1/pn1− 1

p , and hence (
∑n

i=1 λ
2p)

1
p ≥ n(n−1)

n
1− 1

p
= n

1
p (n−

1), therefore
∑n

i=1 λ
2p
i ≥ n(n − 1)p. We assume that 2p = α, then we get

Sα(G) =
∑

|λi|α ≥ n(
√
n− 1)α with equality if and only if |λi| =

√
n− 1 for i

= 1, ..., n. Moreover, if each eigenvalue equal to ±
√
n− 1, then S(G)ST (G) =

S2(G) = (n− 1)I, which means that the Seidel matrix S(G) is a symmetric and
hence the graph G is a conference graph. �

3. Computation of upper bound of Sα(G) by using KKT method

In nonlinear programming, the Karush-Kuhn-Tucker (KKT) conditions are
necessary for a local solution to a maximization problem provided that some
regularity conditions are satisfied. Allowing inequality constraints, the KKT
approach to nonlinear programming generalizes the method of Lagrange multi-
pliers, which allows only equality constraints. This construction is adapted from
[1, 2, 12]. We consider the following nonlinear optimization problem:

Maximize f(X)

subject to :

gi(X) ≤ 0, i ∈ I (1)

hj(X) = 0, j ∈ J

X ∈ Rn

where I and J are finite sets of indices. Suppose that the objective function
f : Rn → R and the constraint functions gi : Rn → R, i ∈ I and hj : Rn →
R, j ∈ J are continuously differentiable at a point X∗.

Definition 3.1. Let X∗ be a point satisfying the constraints:

hj(X
∗) = 0 , gi(X

∗) ≤ 0 , j ∈ J , i ∈ I (2)

and let I∗ be the set of indices i for which gi(X
∗) = 0. Then X∗ is said to

be a regular point of the constraints (3.2), if the gradient vectors ∇hj , j ∈
J , ∇gi(X

∗), i ∈ I∗ are linearly independent.

Definition 3.2 (Karush-Kuhn-Tucker Conditions(KKT) [1, 12]). Let X∗ be a
relative maximum point for the problem (3.1) and suppose X∗ is a regular point
for the constraints, then there exist constants µj (j ∈ J), λi (i ∈ I), which
these constants are called KKT multipliers, such that the following conditions
are hold:
Stationarity

∇f(X∗) +
∑
j∈J

µj∇hj(X
∗)−

∑
i∈I

λi∇gi(X
∗) = 0 (3)

Primal feasibility

gi(X
∗) ≤ 0, for all i ∈ I

hj(X
∗) = 0, for all j ∈ J
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Dual feasibility
λi ≥ 0, for all i ∈ I

Complementary slackness
λigi(X

∗) = 0

In the particular case, set I is empty, i.e., when there are no inequality con-
straints, the KKT conditions turn into the Lagrange conditions, and the KKT
multipliers are called Lagrange multipliers.

Definition 3.3 (Linear Independence Constraint Qualification [2, 12]). Given
the point X∗ is feasible and the active set I∗ = {i|gi(X∗) = 0, i ∈ I} defined
in (3.2), we say that the linear independence constraint qualification (LICQ)
holds if the set of active constraint gradients {∇gi(X

∗), i ∈ I∗)} is linearly
independent.

Theorem 3.4 (LICQ and Multipliers [12]). Given a point X∗, that satisfies
the KKT conditions, along with an active set A(X∗) ≡ I∗

∪
J with multipliers

µ∗
j , λ∗

i , if LICQ holds at X∗, then the multipliers are unique.

Definition 3.5 (Mangasarian-Fromovitz Constraint Qualification [11]). Given
X∗ is a local solution of (3.1), and active set is A(X∗). The Mangasarian-
Fromovitz Constraint Qualification MFCQ is defined by linear independence of
the equality constraint gradients and the existence of a search direction d such
that ∇gi(X

∗)T d < 0,∇hj(X
∗)T d = 0, for all i, j in A(X∗).

The MFCQ is always satisfied if the LICQ is satisfied. Also, satisfaction of the
MFCQ leads to bounded multipliers, µ∗, λ∗, although they are not necessarily
unique.

Theorem 3.6 ([11]). If a local maximum X∗ of the function f(X) subject to
the constraints gi(X

∗) = 0, i ∈ I∗, hj(X
∗) = 0, j ∈ J , satisfies MFCQ, then it

satisfies the KKT conditions.

Now we continue by recalling the relevant upper bound of eigenvalue Seidel
matrix. Let G = (V,E) be a simple, undirected graph on vertex set V =
{v1, ..., vn} and let λ1 ≥ λ2 ≥ ... ≥ λn be the set of all eigenvalues of S(G).
We formulate this as an optimization problem. For doing this case, we need
to come up with appropriate constraints. The following assumption will be
needed throughout the paper. The main constraint is made by the assumption
|detS(G)| ≥ n−1. The other ones are obtained by the following straightforward
lemma.

Lemma 3.7. For any graph G with n vertices, we have:

(i) S2(G) =
∑n

i=1 λ
2
i = (n− 1)2 + (n− 1)

(ii) S4(G) =
∑n

i=1 λ
4
i ≤ (n− 1)4 + (n− 1)
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(iii) S4(G) =
∑n

i=1 λ
4
i ≥ n(n− 1)2

(iv) Maxλ2
i ≤ (n− 1)2

Lemma 3.8 ([4]). Suppose α, β, ν, ω, a, b, c, d are positive numbers and
that

α+ β = ν + ω, aα+ bβ = cν + dω, max{a, b} ≤ max{c, d}, aαbβ ≥ cνdω.

Then the inequality αap + βbp ≤ νcp + ωdp holds for p ≥ 1.

The reminder of this section will be devoted to the proof of Theorem 3.9.

Theorem 3.9. Let G be a graph with n ≥ 3 vertices and let λ1, λ2, ..., λn be the
eigenvalues of S(G). If |detS(G)| ≥ n− 1, then the following condition is hold:

for all α ≥ 2, Sα(G) ≤ (n− 1)α + (n− 1).

Proof. We prove this theorem by using of KKT method in nonlinear program-
ming. Now, we can describe our problem as the maximization of the function
f(X) with assume |λi|2 = xi. Hence, we have:

Max f(X) := xp
1 + xp

2 + ...+ xp
n, p ≥ 1

s.t.

g(X) = x1 + x2 + ...+ xn − n(n− 1) = 0 (4)

h(X) = x2
1 + x2

2 + ...+ x2
n − (n− 1)4 − (n− 1) ≤ 0 (5)

k(X) = n(n− 1)2 − (x2
1 + x2

2 + ...+ x2
n) ≤ 0 (6)

l(X) = (n− 1)2 −
n∏

i=1

xi ≤ 0 (7)

mi(X) = xi − (n− 1)2 ≤ 0 , for i = 1, 2, ..., n (8)

ni(X) = δ − xi ≤ 0 , for i = 1, 2, ..., n (9)

Since |detS(G)| ≥ n − 1, we have λi > 0, 1 ≤ i ≤ n and hence δ must be non
zero and non-negative, as a fixed number. Also, for all i, we must have xi ̸= δ,
because, if for some i, xi = δ, then

∏n
i=1 xi < (n − 1)2 which is contradiction

with (3.7). In continue, we need prove the following claim:

Claim 3.10. Let λ be a local maximum of f(X) according to the constraints
(3.4)-(3.9). Then λ satisfies MFCQ.

Proof: Let λ = (λ1, ..., λn). Without loss of generality, we can assume λ1 ≥
λ2 ≥ ... ≥ λn. If λ1 = λn, then in view of (3.4), all of λi are equal to n−1. In this
case, in the above formulas (3.5) till (3.9), we have the equality only in (3.6) and
hence λ is not a local maximum where f(λ) = n(n−1)p < (n−1)2p+(n−1), p >
1, n ≥ 3, and therefore λ is not satisfies MFCQ. If λ1 > λn, then MFCQ is
fulfilled by setting d = (1, 0, ..., 0,−1). �

Now, we continue the proof of Theorem 3.9. We show that the maximum
value of f(X) according to conditions (3.4)-(3.9) is equal to (n− 1)2p + (n− 1).
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So assume that X = (x1, x2, ..., xn) is a local maximum of f(X) subject to the
constraints (3.4) - (3.9). With no loss of generality suppose that x1 ≥ x2 ≥ ... ≥
xn. By Theorem (3.6) and Lemma (3.7), X satisfies KKT conditions, namely:

∇f(X) + µ1∇g(X)− µ2∇h(X)− µ3∇k(X)− µ4∇l(X) (10)

−
n∑

i=1

(ρi∇mi(X) + γi∇ni(X)) = 0

x1 + x2 + ...+ xn − n(n− 1) = 0 (11)

µ2 ≥ 0, µ2h(X) = 0, µ3 ≥ 0, µ3k(X) = 0, µ4 ≥ 0, µ4l(X) = 0 (12)

ρi ≥ 0, ρimi(X) = 0, i = 1, 2, ..., n (13)

γi ≥ 0, γini(X) = 0, i = 1, 2, ..., n (14)

By the choice of δ, we have ni(X) < 0 for i = 1, 2, ..., n and hence by (3.14),
γ1 = γ2 = ... = γn = 0. We assume that D =

∏n
i=1 xi, then (3.10) can be

written as

pxp−1
i + µ1 − 2µ2xi + 2µ3xi +

µ4D

xi
− ρi = 0 for i = 1, 2, ..., n (15)

We consider the following cases:
Case 1:
Let x1 = (n− 1)2. Then by (3.11) and since X satisfies (3.7), we have

1 =
x2 + ...+ xn

n− 1
≥ (x2x3...xn)

1
n−1 ≥ 1. (16)

It turns out that x2 = x3 = ... = xn = 1 and we have f(X) = (n−1)2p+(n−1).
Case 2:
Let x1 < (n − 1)2. So, by (3.13), ρ1 = ρ2 = ... = ρn = 0. It turns out that
x1, x2, ..., xn must satisfy the following equation:

pxp = −µ4D − µ1x+ 2(µ2 − µ3)x
2 (17)

Assume that µ = µ2 − µ3, then we have:

pxp = −µ4D − µ1x+ 2µx2 (18)

The curves of y = pxp and Parabolic curve y = −µ4D− µ1x− 2µx2 intersect in
at most two points, i.e., the formula (3.17) at most two distinct positive roots.
Now, we have two subcases:
Subcase(i): We have one positive root. Then by (3.11), x1 = x2 = ... = xn =
n − 1. Hence f(X) = n(n − 1)p which is smaller than (n − 1)2p + (n − 1), for
n > 3, p > 1.
Subcase(ii): If (3.18) has two positive roots, say a and b, then by Lemma 3.8,
we assume that c = (n − 1)2 and d = 1, we have f(X) ≤ (n − 1)2p + (n − 1),
which is the desired conclusion and the proof is completed. �
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