ON THE NORMS OF SOME SPECIAL MATRICES WITH GENERALIZED FIBONACCI SEQUENCE

ZAHID RAZA* AND MUHAMMAD ASIM ALI

Abstract

In this study, we define r-circulant, circulant, Hankel and Toeplitz matrices involving the integer sequence with recurrence relation $U_{n}=p U_{n-1}+U_{n-2}$, with $U_{0}=a, U_{1}=b$. Moreover, we obtain special norms of above mentioned matrices. The results presented in this paper are generalizations of some of the results of $[1,10,11]$.

AMS Mathematics Subject Classification : 15A45, 15A60, 15A36, 11B39. Key words and phrases : Circulant, r - circulant, semi-circulant, Hankel, spectral norm, Euclidean norm.

1. Introduction and Preliminaries

A lot of research papers on the norms of some special matrices have been written during the last decade $[1,2,6,10,11]$. Akbulak and Bozkurt [1] found lower and upper bounds for the spectral norms of Toeplitz matrices $A=\left[F_{i-j}\right]_{i, j=1}^{n}$. Solak found bounds for the special norms of circulant matrices [10]. In [12] the authors determined the upper and lowers bounds for Cauchy-Toeplitz and Cauchy Hankel matrices. In [8] bounds of circulant, r-circulant, semi-circulant and Hankel matrices with tribonacci sequence obtained. In [6], the author presented some results about circulant, negacyclic and semi-circulant matrices with the modified Pell, Jacobsthal and Jacobsthal- Lucas numbers. Shen and Cen found the bounds of spectral norm of Fibonacci and Lucas numbers [11]. The generalized Fibonacci sequence is defined as:

$$
\begin{equation*}
U_{n}=p U_{n-1}+U_{n-2} \tag{1}
\end{equation*}
$$

with initial conditions $U_{0}=a, U_{1}=b$, where a and b are positive integer. It is clear that (1) can be written as:

$$
\begin{equation*}
U_{n}=a F_{n-1}+b F_{n} \tag{2}
\end{equation*}
$$

[^0]where F_{n} is called the nth term of p-Fibonacci sequence and defined by
\[

$$
\begin{equation*}
F_{n}=p F_{n-1}+F_{n-2} \text { and } F_{0}=0, \quad F_{1}=1 \tag{3}
\end{equation*}
$$

\]

Generally from equation (3), we have

$$
\begin{equation*}
F_{-n}=(-1)^{n+1} F_{n} \tag{4}
\end{equation*}
$$

Equation (2) can be written as:

$$
\begin{equation*}
U_{-n}=(-1)^{n}\left(a F_{n+1}-b F_{n}\right) \tag{5}
\end{equation*}
$$

A matrix $\mathrm{A}=\mathrm{A}_{r}=\left(\mathrm{a}_{i j}\right) \in M_{n, n}(\mathbb{C})$ is called r-circulant on generalized sequence, if it is of the form

$$
\mathrm{a}_{i j}= \begin{cases}\mathrm{U}_{j-i} & j \geq i \tag{6}\\ r \mathrm{U}_{n+j-i} & j<i\end{cases}
$$

where $r \in \mathbb{C}$. If $r=1$, then matrix A is called circulant.
A matrix $\mathrm{A}=\left(\mathrm{a}_{i j}\right) \in M_{n, n}(\mathbb{C})$ is called semi-circulant on generalized Fibonacci sequence, if it is of the form

$$
a_{i j}= \begin{cases}\mathrm{U}_{j-i+1} & i \leq j \\ 0 & \text { otherwise }\end{cases}
$$

A Hankel matrix on generalized Fibonacci sequence is defined as: $\mathrm{H}=\left(\mathrm{h}_{i j}\right) \in M_{n, n}(\mathbb{C})$, where $\mathrm{h}_{i j}=\mathrm{U}_{i+j-1}$. Similarly, a matrix $\mathrm{A}=\left(\mathrm{a}_{i j}\right) \in$ $M_{n, n}(\mathbb{C})$ is Toeplitz matrix on generalized Fibonacci sequence (1), if it is of the form $a_{i j}=U_{i-j}$. The ℓ_{p} norm of a matrix $\mathrm{A}=\left(a_{i j}\right) \in M_{n, n}(\mathbb{C})$ is defined by

$$
\|\mathrm{A}\|_{p}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{p}\right)^{1 / p}, \quad(1 \leq p \leq \infty)
$$

If $p=\infty$, then $\|\mathrm{A}\|_{\infty}=\lim _{p \rightarrow \infty}\|\mathrm{~A}\|_{p}=\max _{i, j}\left|\mathrm{a}_{i j}\right|$. The Euclidean (Frobenius) norm of the matrix A is defined as:

$$
\|\mathrm{A}\|_{E}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

The spectral norm of the matrix A is given as:

$$
\|\mathrm{A}\|_{2}=\sqrt{\max _{1 \leq i \leq n}\left|\gamma_{i}\right|}
$$

where γ_{i} are the eigenvalues of the matrix $(\overline{\mathrm{A}})^{t} \mathrm{~A}$.
The following inequality between Euclidean and spectral norm holds [13]

$$
\begin{equation*}
\frac{1}{\sqrt{n}}\|\mathrm{~A}\|_{E} \leq\|\mathrm{A}\|_{2} \leq\|\mathrm{A}\|_{E} \tag{7}
\end{equation*}
$$

Definition 1.1 ([9]). Let $\mathrm{A}=\left(\mathrm{a}_{i j}\right)$ and $\mathrm{B}=\left(\mathrm{b}_{i j}\right)$ be $m \times n$ matrices. Then, the Hadamard product of A and B is given by

$$
\mathrm{A} \circ \mathrm{~B}=\left(\mathrm{a}_{i j} \mathrm{~b}_{i j}\right) .
$$

Definition 1.2 ([10]). The maximum column length norm $c_{1}($.$) and maximum$ row length norm $r_{1}($.$) for m \times n$ matrix $\mathrm{A}=\left(\mathrm{a}_{i j}\right)$ is defined as

$$
c_{1}(\mathrm{~A})=\sqrt{\max _{j} \sum_{i}\left|a_{i j}\right|^{2}} \text { and } r_{1}(\mathrm{~A})=\sqrt{\max _{i} \sum_{j}\left|a_{i j}\right|^{2}} \text { respectively. }
$$

Theorem $1.3([7])$. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$ be $p \times q$ matrices. If $C=A \circ B$, then $\|C\|_{2} \leq r_{1}(A) c_{1}(B)$.

The following lemmas describe the properties of p-Fibonacci sequence.
Lemma 1.4 ([5]). Let F_{n} be the n-th term of p-Fibonacci sequence then,

$$
\sum_{i=1}^{n} F_{i} F_{i+1}=R_{n}=\frac{F_{n+1}^{2}+F_{n} F_{n+2}-1}{2 p} .
$$

Lemma 1.5 ([5]). The sum of square of first n terms of p-Fibonacci sequence is given by

$$
\sum_{i=1}^{n} F_{i}^{2}=S_{n}=\frac{F_{n} F_{n+1}}{p}
$$

The following lemmas describes the properties of generalized Fibonacci sequence U_{n}.

Lemma 1.6. The sum of first n terms of generalized Fibonacci sequence U_{n} is given as:

$$
\sum_{i=1}^{n} U_{i}=\frac{U_{n}+U_{n+1}-a-b}{p}
$$

Lemma 1.7 ([5]). The sum of square of first n terms of the sequence U_{n} is given by:

$$
\sum_{i=1}^{n} U_{i}^{2}=\frac{U_{n} U_{n+1}-a b}{p}
$$

Lemma 1.8. Sum of product of consecutive terms of generalized Fibonacci sequence is given as:

$$
\sum_{i=1}^{n} U_{i} U_{i+1}=\left(a^{2}+p a b+b^{2}\right) R_{n}-\left(a^{2}+p a b\right) F_{n} F_{n+1}+a b\left(2 S_{n}-F_{n}^{2}\right)
$$

where $R_{n}=\frac{F_{n+1}^{2}+F_{n} F_{n+2}-1}{2 p}$ and $S_{n}=\frac{F_{n} F_{n+1}}{p}$.

Proof. From equation (2), we have.

$$
\begin{aligned}
U_{i} & =a F_{i-1}+b F_{i} \\
U_{i} U_{i+1} & =\left(a F_{i-1}+b F_{i}\right)\left(a F_{i}+b F_{i+1}\right) \\
U_{i} U_{i+1} & =a^{2} F_{i-1} F_{i}+b^{2} F_{i} F_{i+1}+a b F_{i-1} F_{i+1}+a b F_{i}^{2} \\
U_{i} U_{i+1} & =a^{2} F_{i-1} F_{i}+b^{2} F_{i} F_{i+1}+a b F_{i-1}\left(p F_{i}+F_{i-1}\right)+a b F_{i}^{2} \\
\sum_{i=1}^{n} U_{i} U_{i+1} & =\left(a^{2}+p a b\right) \sum_{i=1}^{n} F_{i-1} F_{i}+b^{2} \sum_{i=1}^{n} F_{i} F_{i+1}+a b\left(\sum_{i=1}^{n} F_{i-1}^{2}+\sum_{i=1}^{n} F_{i}^{2}\right) .
\end{aligned}
$$

By lemmas (1.4) and (1.5), we get

$$
\begin{aligned}
\sum_{i=1}^{n} U_{i} U_{i+1} & =\left(a^{2}+p a b\right)\left(R_{n}-F_{n} F_{n+1}\right)+b^{2}\left(R_{n}\right)+a b\left(2 S_{n}-F_{n}^{2}\right) \\
& =\left(a^{2}+p a b+b^{2}\right) R_{n}-\left(a^{2}+p a b\right) F_{n} F_{n+1}+a b\left(2 S_{n}-F_{n}^{2}\right)
\end{aligned}
$$

Theorem 1.9. For all $n \geq 1$
$\sum_{j=1}^{n} \sum_{k=1}^{j} U_{k}^{2}=\mathrm{T}_{\mathrm{n}}=\frac{\left(a^{2}+p a b+b^{2}\right) R_{n}-\left(a^{2}+p a b\right) F_{n} F_{n+1}+a b\left(2 S_{n}-F_{n}^{2}\right)-n a b}{p}$, where R_{n} and S_{n} are defined in lemma (1.4) and (1.5) respectively.
Proof. From Lemma (1.7) and (1.8), we have

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{k=1}^{j} U_{k}^{2} & =\sum_{j=1}^{n}\left(\frac{U_{j} U_{j+1}-a b}{p}\right) \\
& =\left(\frac{1}{p}\right)\left(\sum_{j=1}^{n} U_{j} U_{j+1}-n a b\right) \\
& =\frac{\left(a^{2}+p a b+b^{2}\right) R_{n}-\left(a^{2}+p a b\right) F_{n} F_{n+1}+a b\left(2 S_{n}-F_{n}^{2}\right)-n a b}{p}
\end{aligned}
$$

Lemma 1.10. For all $n>1$

$$
\begin{aligned}
\sum_{i=1}^{n-1} \sum_{j=1}^{i} U_{-j}^{2}=\mathrm{T}_{-(n-1)}=\frac{1}{2 p^{2}} & {\left[2\left(a^{2} p-2 a b\right)\left(F_{n} F_{n-1}-p\right)\right.} \\
& \left.+\left(a^{2}+b^{2}-a b p\right)\left(F_{n}^{2}+F_{n-1} F_{n+1}-1\right)+2 n p\left(a b-p a^{2}\right)\right]
\end{aligned}
$$

Proof. From equation (5), we obtain

$$
\sum_{i=1}^{n-1} \sum_{j=1}^{i} U_{-j}^{2}=\sum_{i=1}^{n-1}\left(a^{2} \sum_{j=1}^{i} F_{j+1}^{2}+b^{2} \sum_{j=1}^{i} F_{j}^{2}-2 a b \sum_{j=1}^{i} F_{j} F_{j+1}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n-1}\left[a^{2}\left(\frac{F_{i+1} F_{i+2}}{p}-1\right)+b^{2}\left(\frac{F_{i} F_{i+1}}{p}\right)-2 a b\left(\frac{F_{i+1}^{2}+F_{i} F_{i+2}-1}{2 p}\right)\right] \\
& =\frac{1}{p}\left[a^{2} \sum_{i=1}^{n-1} F_{i+1} F_{i+2}+b^{2} \sum_{i=1}^{n-1} F_{i} F_{i+1}-a b \sum_{i=1}^{n-1} F_{i+1}^{2}\right. \\
& \left.\quad-a b \sum_{i=1}^{n-1} F_{i} F_{i+2}+\left(a b-p a^{2}\right)(n-1)\right]
\end{aligned}
$$

On the other hand, from equation (3), we have

$$
\sum_{i=1}^{n-1} F_{i} F_{i+2}=p \sum_{i=1}^{n-1} F_{i} F_{i+1}+\sum_{i=1}^{n-1} F_{i}^{2} \text { and } \sum_{i=1}^{n-1} F_{i+1} F_{i+2}=p \sum_{i=1}^{n-1} F_{i+1}^{2}+\sum_{i=1}^{n-1} F_{i} F_{i+1}
$$

Thus, we have
$=\frac{1}{p}\left[\left(a^{2} p-a b\right) \sum_{i=1}^{n-1} F_{i+1}^{2}+\left(a^{2}+b^{2}-a b p\right) \sum_{i=1}^{n-1} F_{i} F_{i+1}-a b \sum_{i=1}^{n-1} F_{i}^{2}+\left(a b-p a^{2}\right)(n-1)\right]$
$=\frac{1}{p}\left[\left(a^{2} p-2 a b\right)\left(\frac{F_{n} F_{n+1}-p}{p}\right)+\left(a^{2}+b^{2}-a b p\right)\left(\frac{F_{n}^{2}+F_{n-1} F_{n+1}-1}{2 p}\right)+\left(a b-p a^{2}\right)(n)\right]$
$=\frac{1}{2 p^{2}}\left[2\left(a^{2} p-2 a b\right)\left(F_{n} F_{n-1}-p\right)+\left(a^{2}+b^{2}-a b p\right)\left(F_{n}^{2}+F_{n-1} F_{n+1}-1\right)+2 n p\left(a b-p a^{2}\right)\right]$.

2. r-circulant, circulant and semi-circulant

In this section, we shall give main results related to r-circulant, circulant and sem-circulant on generalized Fibonacci sequence U_{n}.

Theorem 2.1. Let $A=A_{r}\left(U_{0}, U_{1}, \ldots, U_{n-1}\right)$ be r-circulant matrix.
If $|r| \geq 1$, then $\sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \leq\|A\|_{2} \leq|r|\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)$
If $|r|<1$, then $|r| \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \leq\|A\|_{2} \leq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)\left(a^{2}+n-1\right)}$.
Proof. The r-circulant matrix A on the sequence (1) is given as:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
U_{0} & U_{1} & U_{2} & \cdots & U_{n-1} \\
r U_{n-1} & U_{0} & U_{1} & \cdots & U_{n-2} \\
r U_{n-2} & r U_{n-1} & U_{0} & \cdots & U_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
r U_{1} & r U_{2} & r U_{3} & \cdots & U_{0}
\end{array}\right]
$$

and from the definition of Euclidean norm, we have

$$
\begin{equation*}
\|\mathrm{A}\|_{E}^{2}=\sum_{k=0}^{n-1}(n-k) U_{k}^{2}+\sum_{k=1}^{n-1} k|r|^{2} U_{k}^{2} . \tag{8}
\end{equation*}
$$

Here we have two cases depending on r.

Case 1. If $|r| \geq 1$, then from equation (8), we have

$$
\|\mathrm{A}\|_{E}^{2} \geq \sum_{k=0}^{n-1}(n-k) U_{k}^{2}+\sum_{k=1}^{n-1} k U_{k}^{2}=n \sum_{k=0}^{n-1} U_{k}^{2}
$$

and from lemma (1.7), we get.

$$
\|\mathrm{A}\|_{E}^{2} \geq n\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right) \Rightarrow \frac{1}{\sqrt{n}}\|A\|_{E} \geq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)}
$$

By inequality (7), we obtain

$$
\begin{equation*}
\|\mathrm{A}\|_{2} \geq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \tag{9}
\end{equation*}
$$

On the other hand, let us define two new matrices C and D as :

$$
\mathbf{C}=\left[\begin{array}{ccccc}
r U_{0} & 1 & 1 & \cdots & 1 \\
r U_{n-1} & r U_{0} & 1 & \cdots & 1 \\
r U_{n-2} & r U_{n-1} & r U_{0} & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
r U_{1} & r U_{2} & r U_{3} & \cdots & r U_{0}
\end{array}\right] \text { and } \mathbf{D}=\left[\begin{array}{ccccc}
U_{0} & U_{1} & U_{2} & \cdots & U_{n-1} \\
1 & U_{0} & U_{1} & \cdots & U_{n-2} \\
1 & 1 & U_{0} & \cdots & U_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & U_{0}
\end{array}\right]
$$

Then it is easy to see that $A=C \circ D$, so from definition (1.2)

$$
\begin{gathered}
r_{1}(\mathrm{C})=\max _{i \leq i \leq n} \sqrt{\sum_{j=1}^{n}\left|\mathrm{c}_{i j}\right|^{2}}=\sqrt{\sum_{j=1}^{n}\left|\mathrm{c}_{n j}\right|^{2}}=\sqrt{|r|^{2} \sum_{k=0}^{n-1} U_{k}^{2}}=|r| \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)}, \\
\mathrm{c}_{1}(\mathrm{D})=\max _{1 \leq j \leq n} \sqrt{\sum_{i=1}^{n}\left|\mathrm{~d}_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{n}\left|\mathbf{d}_{n j}\right|^{2}}=\sqrt{\sum_{k=0}^{n-1} U_{k}^{2}}=\sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)}
\end{gathered}
$$

Now using theorem (1.3), we obtain

$$
\begin{gather*}
\|\mathrm{A}\|_{2} \leq r_{1}(\mathrm{C}) c_{1}(\mathrm{D})=|r| \frac{\left(U_{n} U_{n-1}-a b+a^{2}\right)}{p} \\
\|\mathrm{~A}\|_{2} \leq|r| \frac{\left(U_{n} U_{n-1}-a b+a^{2}\right)}{p} \tag{10}
\end{gather*}
$$

Combine inequalities (9) and (10), we get following inequality

$$
\sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \leq\|\mathrm{A}\|_{2} \leq|r|\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)
$$

Case 2. If $|r| \leq 1$, then we have

$$
\|\mathrm{A}\|_{E}^{2} \geq \sum_{k=0}^{n-1}(n-k)|r|^{2} U_{k}^{2}+\sum_{k=0}^{n-1} k|r|^{2} U_{k}^{2}=n \sum_{k=0}^{n-1}|r|^{2} U_{k}^{2}
$$

$$
\frac{1}{\sqrt{n}}\|\mathrm{~A}\|_{E} \geq|r| \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p U_{a}^{2}}{p}\right)}
$$

By inequality (7), we get

$$
\begin{equation*}
\|\mathrm{A}\|_{2} \geq|r| \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \tag{11}
\end{equation*}
$$

On the other hand, let the matrices C^{\prime} and D^{\prime} be defined as:

$$
\mathrm{C}^{\prime}=\left[\begin{array}{ccccc}
U_{0} & 1 & 1 & \cdots & 1 \\
r & U_{0} & 1 & \cdots & 1 \\
r & r & U_{0} & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
r & r & r & \cdots & U_{0}
\end{array}\right] \quad \text { and } \mathrm{D}^{\prime}=\left[\begin{array}{ccccc}
U_{0} & U_{1} & U_{2} & \cdots & U_{n-1} \\
U_{n-1} & U_{0} & U_{1} & \cdots & U_{n-2} \\
U_{n-2} & U_{n-1} & U_{0} & \cdots & U_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
U_{1} & U_{2} & U_{3} & \cdots & U_{0}
\end{array}\right]
$$

such that $A=C^{\prime} \circ D^{\prime}$, then by definition (1.2), we obtain

$$
r_{1}\left(\mathrm{C}^{\prime}\right)=\max _{1 \leq i \leq n} \sqrt{\sum_{j=1}^{n}\left|\mathrm{c}^{\prime}{ }_{i j}\right|^{2}}=\sqrt{U_{0}^{2}+(n-1)}=\sqrt{a^{2}+(n-1)}
$$

and

$$
c_{1}\left(\mathrm{D}^{\prime}\right)=\max _{1 \leq j \leq n} \sqrt{\sum_{i=1}^{n}\left|\mathrm{~d}^{\prime}{ }_{i j}\right|^{2}}=\sqrt{\sum_{k=0}^{n-1} U_{k}^{2}}=\sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} .
$$

Again by applying theorem (1.3)

$$
\begin{gather*}
\|\mathrm{A}\|_{2} \leq r_{1}\left(\mathrm{C}^{\prime}\right) c_{1}\left(\mathrm{D}^{\prime}\right)=\sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \sqrt{a^{2}+n-1} \\
\|\mathrm{~A}\|_{2} \leq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)\left(a^{2}+n-1\right)} \tag{12}
\end{gather*}
$$

and combing inequality (11) and (12), we obtain the required result.

$$
|r| \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \leq\|\mathrm{A}\|_{2} \leq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)\left(a^{2}+n-1\right)}
$$

Remark 2.2. The above theorem is the generalization of the result [11]. If put $p=1, U_{0}=0$ and $U_{1}=1$ then $U_{n}=U_{n-1}+U_{n-2}$, which is same as $F_{n}=F_{n-1}+F_{n-2}$ with initial conditions $F_{0}=0$ and $F_{1}=1$.

Theorem 2.3. Let A be the circulant matrix on generalized Fibonacci sequence.
Then, $\|A\|_{E}=\sqrt{n\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)}$ and
$\sqrt{\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}} \leq\|A\|_{2} \leq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a_{2}}{p}\right)} \sqrt{1+\frac{U_{n} U_{n-1}-a b}{P}}$.
Proof. Since by definition of circulant matrix, the matrix A is of the form

$$
\mathrm{A}=\left[\begin{array}{ccccc}
U_{0} & U_{1} & U_{2} & \cdots & U_{n-1} \\
U_{n-1} & U_{0} & U_{1} & \cdots & U_{n-2} \\
U_{n-2} & U_{n-1} & U_{0} & \cdots & U_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
U_{1} & U_{2} & U_{3} & \cdots & U_{0}
\end{array}\right]
$$

and form the definition of Euclidean norm, one can get,

$$
\begin{equation*}
\|\mathrm{A}\|_{E}=\sqrt{n \sum_{i=0}^{n-1} U_{i}^{2}}=\sqrt{n} \sqrt{\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}} \tag{13}
\end{equation*}
$$

By inequality (7), we get

$$
\begin{equation*}
\sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \leq\|\mathrm{A}\|_{2} \tag{14}
\end{equation*}
$$

Let matrices B and C be defined as:

$$
\mathrm{B}=\left\{\begin{array}{ll}
\mathrm{b}_{i j}=U_{(\bmod (j-i, n))}, & i \leq j \\
\mathrm{~b}_{i j}=1, & i<j
\end{array} \text { and } \mathrm{C}= \begin{cases}\mathrm{c}_{i j}=U_{(\bmod (j-i, n))}, & i<j \\
\mathrm{c}_{i j}=1, & i \geq j\end{cases}\right.
$$

Then the row norm and column norm of B and C are given as:

$$
\begin{aligned}
& r_{1}(\mathrm{~B})=\max _{i} \sqrt{\sum_{j=1}^{n}\left|\mathrm{~b}_{i j}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1} U_{i}^{2}}=\sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)}, \\
& c_{1}(\mathrm{C})=\max _{j} \sqrt{\sum_{i=1}^{n}\left|\mathrm{c}_{i j}\right|^{2}}=\sqrt{1+\sum_{i=1}^{n-1} U_{i}^{2}}=\sqrt{1+\frac{U_{n} U_{n-1}-a b}{p}}
\end{aligned}
$$

Using theorem (1.3), we have

$$
\begin{equation*}
\|\mathrm{A}\|_{2} \leq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \sqrt{1+\frac{U_{n} U_{n-1}-a b}{p}} \tag{15}
\end{equation*}
$$

Combine (14) and (15), we get

$$
\sqrt{\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}} \leq\|\mathrm{A}\|_{2} \leq \sqrt{\left(\frac{U_{n} U_{n-1}-a b+p a^{2}}{p}\right)} \sqrt{1+\frac{U_{n} U_{n-1}-a b}{p}}
$$

Remark 2.4. Above result is the generalization of Solak's work [10], in which the author found the upper and lower bounds for the Euclidean and spectral norms of circulant matrices.

Theorem 2.5. Let A be an $n \times n$ semi-circulant matrix $A=\left(a_{i j}\right)$ with the generalized Fibonacci numbers then,

$$
\|A\|_{E}^{2}=\frac{\left(a^{2}+p a b+b^{2}\right) R_{n}-\left(a^{2}+p a b\right) F_{n} F_{n+1}+a b\left(2 S_{n}-F_{n}^{2}\right)-n a b}{p}
$$

Proof. For the semi-circulant matrix $\mathrm{A}=\left(\mathrm{a}_{i j}\right)$ with the Generalized Fibonacci sequence numbers we have

$$
\mathrm{a}_{i j}= \begin{cases}U_{j-i+1} & i \leq j \\ 0 & \text { otherwise } .\end{cases}
$$

From the definition of Euclidean norm, we have

$$
\|\mathrm{A}\|_{E}^{2}=\sum_{j=1}^{n} \sum_{i=1}^{j}\left(U_{j-i+1}\right)^{2}=\sum_{j=1}^{n}\left(\sum_{k=1}^{j} U_{k}^{2}\right) .
$$

Using lemma (1.9), we get the required result

$$
\|\mathrm{A}\|_{E}^{2}=\frac{\left(a^{2}+p a b+b^{2}\right) R_{n}-\left(a^{2}+p a b\right) F_{n} F_{n+1}+a b\left(2 S_{n}-F_{n}^{2}\right)-n a b}{p}
$$

3. Hankel and Toeplitz matrix norm

In this section, we have calculated the bounds of Hankel and Toeplitz matrix associated with generalized Fibonacci sequence.

Theorem 3.1. If $A=\left(a_{i j}\right)$ is an $n \times n$ Hankel matrix with $a_{i j}=U_{i+j-1}$, then

$$
\|A\|_{E}=\left[\frac{\mathrm{T}_{2 n-1}-2 \mathrm{~T}_{n-1}-a b}{p}\right]^{\frac{1}{2}}
$$

where T_{n} is defined in lemma (1.9).
Proof. From the definition of Hankel matrix, the matrix A is of the form

$$
\mathrm{A}=\left[\begin{array}{cccccc}
U_{1} & U_{2} & U_{3} & \cdots & U_{n-1} & U_{n} \\
U_{2} & U_{3} & U_{4} & \cdots & U_{n} & U_{n+1} \\
U_{3} & U_{4} & U_{5} & \cdots & U_{n+1} & U_{n+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
U_{n-1} & U_{n} & U_{n+1} & \cdots & U_{2 n-3} & U_{2 n-2} \\
U_{n} & U_{n+1} & U_{n+2} & \cdots & U_{2 n-2} & U_{2 n-1}
\end{array}\right]
$$

So, we have

$$
\begin{aligned}
& \|\mathrm{A}\|_{E}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|\mathrm{a}_{i j}\right|^{2}\right)^{1 / 2} \\
& \|\mathrm{~A}\|_{E}=\left(\sum_{k=1}^{n} U_{k}^{2}+\sum_{k=2}^{n+1} U_{k}^{2}+\ldots+\sum_{k=n}^{2 n-1} U_{k}^{2}\right)^{1 / 2} \\
& \|\mathrm{~A}\|_{E}=\left(\left(\sum_{k=1}^{n} U_{k}^{2}+\sum_{k=1}^{n+1} U_{k}^{2}+\ldots+\sum_{k=1}^{2 n-1} U_{k}^{2}\right)-\left(\sum_{k=1}^{n-1} \sum_{i=1}^{k} U_{i}^{2}\right)\right)^{1 / 2} \\
& \|\mathrm{~A}\|_{E}=\left[\left(\frac{U_{n} U_{n+1}-a b}{p}\right)+\left(\frac{U_{n+1} U_{n+2}-a b}{p}\right)+\ldots+\left(\frac{U_{2 n-1} U_{2 n}-a b}{p}\right)\right. \\
& \|\mathrm{A}\|_{E}=\left[\sum_{k=1}^{2 n-1}\left(\frac{U_{k} U_{k+1}-a b}{p}\right)-2 \sum_{k=1}^{n-1}\left(\frac{U_{k} U_{k+1}-a b}{p}\right)\right]^{\frac{1}{2}} \\
& \|\mathrm{~A}\|_{E}=\left[\frac{1}{p} \sum_{k=1}^{2 n-1} U_{k} U_{k+1}-a b\right. \\
& p \\
& \left.\sum_{k+1}^{\frac{1}{2}}-2 \frac{1}{p} \sum_{k=1}^{n-1} U_{k} U_{k+1}-\frac{a b}{p}\right]^{\frac{1}{2}} \\
& \|\mathrm{~A}\|_{E}=\left[\frac{\mathrm{T}_{2 n-1}-2 \mathrm{~T}_{n-1}-a b}{p}\right]^{\frac{1}{2}} .
\end{aligned}
$$

Theorem 3.2. If $A=\left(a_{i j}\right)$ is an $n \times n$ Hankel matrix with $a_{i j}=U_{i+j-1}$ then, we have

$$
\frac{1}{\sqrt{n}}\|A\|_{E} \leq\|A\|_{2} \leq \frac{\sqrt{\left(U_{n} U_{n+1}-a b\right)\left(U_{n} U_{n+1}-a b+p\left(1-b^{2}\right)\right)}}{p}
$$

Proof. From theorem (3.1) and inequality (7), we have

$$
\frac{1}{\sqrt{n}}\|\mathrm{~A}\|_{E} \leq\|\mathrm{A}\|_{2}
$$

Let us define two new matrices

$$
\mathrm{M}=\left\{\begin{array}{ll}
\mathrm{m}_{i j}=U_{i+j-1} & i \leq j \\
\mathrm{n}_{i j}=1 & i>j
\end{array} \text { and } \mathrm{N}= \begin{cases}\mathrm{n}_{i j}=U_{i+j-1} & i>j \\
\mathrm{n}_{i j}=1 & i \leq j\end{cases}\right.
$$

It can be easily seen that $A=M \circ N$. Thus we get

$$
\begin{aligned}
& r_{1}(\mathrm{M})=\max _{i} \sqrt{\sum_{j}\left|\mathrm{~m}_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{n} U_{i}^{2}}=\sqrt{\left[\frac{U_{n} U_{n+1}-a b}{p}\right]}, \\
& c_{1}(\mathrm{~N})=\max _{j} \sqrt{\sum_{i}\left|\mathbf{n}_{i j}\right|^{2}}=\sqrt{1+\sum_{i=2}^{n} U_{i}^{2}}=\sqrt{\frac{U_{n} U_{n+1}-a b+p\left(1-b^{2}\right)}{p}} .
\end{aligned}
$$

Using the theorem (1.3), we have

$$
\|\mathrm{A}\|_{2} \leq \frac{\sqrt{\left(U_{n} U_{n+1}-a b\right)\left(U_{n} U_{n+1}-a b+p\left(1-b^{2}\right)\right)}}{p}
$$

Theorem 3.3. If $A=\left(a_{i j}\right)$ is an $n \times n$ Hankel matrix with $a_{i j}=U_{i+j-1}$. Then we have $\|A\|_{1}=\|A\|_{\infty}=U_{2 n+1}-U_{n+1}$.

Proof. From the definition of the matrix A, we can write

$$
\begin{aligned}
\|\mathrm{A}\|_{1} & =\max _{i \leq j \leq n} \sum_{i=1}^{n}\left|\mathrm{a}_{i j}\right|=\max _{1 \leq j \leq n}\left\{\left|\mathrm{a}_{1 j}\right|+\left|\mathrm{a}_{2 j}\right|+\left|\mathrm{a}_{3 j}\right| \ldots\left|\mathrm{a}_{n j}\right|\right\} \\
\|\mathrm{A}\|_{1} & =U_{n}+U_{n+1}+U_{n+2}+\cdots+U_{2 n-1} \\
\|\mathrm{~A}\|_{1} & =\sum_{i=1}^{2 n-1} U_{i}-\sum_{i=1}^{n-1} U_{i}
\end{aligned}
$$

by lemma (1.6), we have

$$
\|\mathrm{A}\|_{1}=\frac{U_{2 n-1}+U_{2 n}-U_{n-1}-U_{n}}{p} .
$$

Similarly, the row norm of the matrix A can be computed as:

$$
\|\mathrm{A}\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|\mathrm{a}_{i j}\right|=\frac{U_{2 n-1}+U_{2 n}-U_{n-1}-U_{n}}{p}
$$

Theorem 3.4. The bounds of spectral norms of the Toeplitz matrix A are given as

$$
\|A\|_{2} \geq \sqrt{\frac{n a^{2}+\mathrm{T}_{n-1}+\mathrm{T}_{-(n-1)}}{n}}
$$

and

$$
\begin{aligned}
\|A\|_{2} \leq & \left(\frac{U_{n-1} U_{n}-a b}{p}+a^{2}\right) \\
& \left.\times\left\{1+a^{2}\left(\frac{F_{n} F_{n+1}}{p}-1\right)+b^{2}\left(\frac{F_{n} F_{n-1}}{p}\right)-2 a b\left(\frac{F_{n}^{2}+F_{n-1} F_{n+1}-1}{2 p}\right)\right\}\right]^{1 / 2},
\end{aligned}
$$

where T_{n-1} and $\mathrm{T}_{-(n-1)}$ are defined in lemma (1.9) and (1.10) respectively.

Proof. The Toeplitz matrix A define by the sequence (1) is given as

$$
\mathrm{A}=\left[\begin{array}{cccccc}
U_{0} & U_{-1} & U_{-2} & \cdots & U_{2-n} & U_{2-n} \\
U_{1} & U_{0} & U_{-1} & \cdots & U_{3-n} & U_{2-n} \\
U_{2} & U_{1} & U_{0} & \cdots & U_{4-n} & U_{3-n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
U_{n-2} & U_{n-3} & U_{n-4} & \cdots & U_{0} & U_{-1} \\
U_{n-1} & U_{n-2} & U_{n-3} & \cdots & U_{1} & U_{0}
\end{array}\right] .
$$

From the definition of Euclidean norm, we have

$$
\|\mathrm{A}\|_{E}^{2}=n U_{0}^{2}+\sum_{i=1}^{n-1} \sum_{k=1}^{i} U_{k}^{2}+\sum_{i=1}^{n-1} \sum_{k=1}^{i} U_{-k}^{2}
$$

From Lemma (1.9) and (1.10), we have

$$
\begin{equation*}
\|\mathrm{A}\|_{E}^{2}=n a^{2}+\mathrm{T}_{n-1}+\mathrm{T}_{n-1} \tag{16}
\end{equation*}
$$

Using inequality (7), we obtain

$$
\begin{equation*}
\|\mathrm{A}\|_{2} \geq \sqrt{\frac{n a^{2}+\mathrm{T}_{n-1}+\mathrm{T}_{n-1}}{n}} \tag{17}
\end{equation*}
$$

On the other hand, let us consider the matrices.

$$
C=\left(c_{i j}\right)=\left\{\begin{array}{ll}
c_{i j}=1 & j=1 \\
c_{i j}=U_{i-j} & j \neq 1
\end{array} \text { and } D=\left(d_{i j}\right)= \begin{cases}d_{i j}=1 & j \neq 1 \\
d_{i j}=U_{i-j} & j=1\end{cases}\right.
$$

such that, $\mathrm{A}=C \circ D$. Then using definition (1.2)

$$
\begin{aligned}
r_{1}(C) & =\max _{i} \sqrt{\sum_{j}\left(c_{i j}\right)^{2}}=\sqrt{1+\sum_{k=1}^{n-1} U_{-k}^{2}} \\
& =\sqrt{1+a^{2} \sum_{k=1}^{n-1} F_{k+1}^{2}+b^{2} \sum_{k=1}^{n-1} F_{k}^{2}-2 a b \sum_{k=1}^{n-1} F_{k} F_{k+1}} \\
& =\sqrt{1+a^{2}\left(\frac{F_{n} F_{n+1}}{p}-1\right)+b^{2}\left(\frac{F_{n} F_{n-1}}{p}\right)-2 a b\left(\frac{F_{n}^{2}+F_{n-1} F_{n+1}-1}{2 p}\right)} \\
c_{1}(D) & =\max _{j} \sqrt{\sum_{i}\left(d_{i j}\right)^{2}}=\sqrt{\sum_{k=0}^{n-1} U_{k}^{2}}=\sqrt{\frac{U_{n-1} U_{n}-a b}{p}+a^{2}}
\end{aligned}
$$

By theorem (1.3), we obtain the desired result

$$
\begin{aligned}
\|\mathrm{A}\|_{2} \leq & {\left[\left(\frac{U_{n-1} U_{n}-a b}{p}+a^{2}\right)\right.} \\
& \left.\times\left\{1+a^{2}\left(\frac{F_{n} F_{n+1}}{p}-1\right)+b^{2}\left(\frac{F_{n} F_{n-1}}{p}\right)-2 a b\left(\frac{F_{n}^{2}+F_{n-1} F_{n+1}-1}{2 p}\right)\right\}\right]^{1 / 2},
\end{aligned}
$$

Remark 3.5. Norms of Toeplitz matrix with Fibonacci and Lucas numbers have been calculated by Akbulak and Bozkurt [1]. Theorem (3.4) is a generalization of their paper.

References

1. M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacettepe J. Math. Stat. 37 (2008), 89-95.
2. S. Halici, On some inequality and hankel matrices involving Pell, Pell Lucas numbers, Math. Reports 65 (2013), 1-10.
3. D. Kalman and R. Mena, The Fibonacci Numbers, The Mathematical Magazine 2 (2002), 12-24.
4. T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Interscience Publications, (2001).
5. E. Kilic, Sums of the squares of terms of sequence $\left\{u_{n}\right\}$, Proc. Indian Acad. Sci.(Math. Sci.) 118 (2008), 27-41.
6. E.G. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and Jacobsthal-Lucas numbers, Hacettepe J. Math. Stat. 36 (2007), 133-142.
7. R. Mathias, The spectral norm of nonnegative matrix, Linear Algebra Appl. 131 (1990), 269-284.
8. Z, Raza and M.A. Ali, On the norms of circulant, r-circulant, semi-sirculant and Hankel matrices with tribonacci sequence, arXiv(2014):1407.1369.
9. R. Reams, Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra Appl. 288 (1999), 35-43.
10. S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput. 160 (2005), 125-132.
11. J. Shen and J. Cen, On the spectral norms of r-circulant matrices with the k-Fibonacci and k-Lucas numbers, Int. J. Contemp. Math. Sciences 12 (2010), 569-578.
12. S. Solak and D. Bozkurt, On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Appl. Math. Comput. 140 (2003), 231-238.
13. G. Zielke, Some remarks on matrix norms, condition numbers and error estimates for linear equations, Linear Algebra Appl. 110 (1988), 29-41.

Zahid Raza received M.Sc. from the University of Punjab and Ph.D from Abdus Salam School of Mathematical Sciences Government College University Lahore, Pakistan. Since 2010 he has been working at National University of Computer \& Emerging Sciences, Lahore campus. Currently, he is working as an associate professor of mathematics in the faculty of Sciences and Humanities at Lahore Campus. His research interests include algebraic combinatorics and elementary number theory.
Department of Mathematics, National University of Computer \& Emerging Sciences, Lahore campus B-Block Faisal Town, Lahore, Pakistan.
E-mail: zahid.raza@nu.edu.pk
Muhammad Msim Ali received MS mathematics from National University of Computer \& Emerging Sciences. He is currently a faculty member at Punjab Group of Colleges, Lahore. His research interests are computational mathematics and combinatorial number theory.
Department of Mathematics, National University of Computer \& Emerging Sciences, Lahore B-Block Faisal Town, Lahore, Pakistan.
E-mail: masimali99@gmail.com

[^0]: Received June 8, 2014. Revised June 8, 2015. Accepted June 22, 2015. * Corresponding author. (C) 2015 Korean SIGCAM and KSCAM.

