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PRIME FILTERS OF COMMUTATIVE BE-ALGEBRAS
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Abstract. Properties of prime filters are studied in BE-algebras as well
as in commutative BE-algebras. An equivalent condition is derived for a

BE-algebra to become a totally ordered set. A condition L is introduced
in a commutative BE-algebra in ordered to study some more properties of
prime filters in commutative BE-algebras. A set of equivalent conditions is

derived for a commutative BE-algebra to become a chain. Some topological
properties of the space of all prime filters of BE-algebras are studied.
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1. Introduction

The notion of BE-algebras was introduced and extensively studied by H.S.
Kim and Y.H. Kim in [5]. These classes of BE-algebras were introduced as
a generalization of the class of BCK-algebras of K. Iseki and S. Tanaka [4].
Some properties of filters of BE-algebras were studied by S.S. Ahn and K.S. So
in [1]. In [6, 7], the notion of normal filters is introduced in BE-algebras. In
[2, 3], S.S. Ahn and K.S. So introduced the notion of ideals in BE-algebras and
proved several characterizations of such ideals. Also they generalized the notion
of upper sets in BE-algebras, and discussed some properties of the characteriza-
tions of generalized upper sets related to the structure of ideals in transitive and
self-distributive BE-algebras. Recently in 2012, S.S. Ahn, Y.H. Kim and J.M.
Ko [1] introduced the notion of a terminal section of BE-algebras and derived
some characterizations of commutative BE-algebras in terms of lattice ordered
relations and terminal sections.

In this paper, the notion of prime filters is introduced in BE-algebras. Some
properties of prime filters and maximal filters are then studied. An equivalent
condition is derived, in terms of prime filters, for the class of all filters of a
BE-algebra to become a totally ordered set. Properties of prime filters are also
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studied in commutative BE-algebras. A condition L is introduced to study
some properties of prime filters of BE-algebras. Prime filters of a commutative
BE-algebra are characterized. A set of equivalent conditions is derived for a
commutative BE-algebra to become a chain. Some topological properties of the
space of all prime filters of a BE-algebra are studied. An equivalent condition
is derived for every prime filter of a BE-algebra to become a maximal filter.

2. Preliminaries

In this section, we present certain definitions and results which are taken
mostly from the papers [1], [5] and [7] for the ready reference of the reader.

Definition 2.1 ([5]). An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra
if it satisfies the following properties:
(1) x ∗ x = 1 (2) x ∗ 1 = 1
(3) 1 ∗ x = x (4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X

Theorem 2.2 ([5]). Let (X, ∗, 1) be a BE-algebra. Then we have the following:

(1) x ∗ (y ∗ x) = 1 (2) x ∗ ((x ∗ y) ∗ y)) = 1

We introduce a relation ≤ on a BE-algebra X by x ≤ y if and only if x∗y = 1
for all x, y ∈ X. A BE-algebra X is called self-distributive if x ∗ (y ∗ z) =
(x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X. A BE-algebra X is called commutative if
(x ∗ y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X.

Definition 2.3 ([1]). A BE-algebra (X, ∗, 1) is said to transitive if for all
x, y, z ∈ X, it satisfies y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).
Definition 2.4 ([1]). Let (X, ∗, 1) be a BE-algebra. A non-empty subset F of
X is called a filter of X if, for all x, y ∈ X, it satisfies the following properties:
(a) 1 ∈ F
(b) x ∈ F and x ∗ y ∈ F imply that y ∈ F

Definition 2.5 ([5]). Let (X1, ∗, 1) and (X2, ◦, 1′) be two BE-algebras. Then a
mapping f : X1 −→ X2 is called a homomorphism if f(x ∗ y) = f(x) ◦ f(y) for
all x, y ∈ X1.

It it clear that if f : X1 −→ X2 is a homomorphism, then f(1) = 1′. For
any x, y ∈ X, A. Walendzaik [8] defined the operation ∨ as x ∨ y = (y ∗ x) ∗ x.
However, in a commutative BE-algebra X, we can obtain for any x, y ∈ X, that
x ∨ y = (y ∗ x) ∗ x = (x ∗ y) ∗ y = y ∨ x. For any non-empty subset A of a
BE-algebra X, ⟨A⟩ is the smallest filter containing A.

Theorem 2.6 ([1]). If A is a non-empty subset of a self-distributive BE-algebra
X, then

⟨A⟩ = {x ∈ X | an ∗ (... ∗ (a1 ∗ x)...) = 1 for some a1, a2, ..., an ∈ A}.
Let F be a filter of a BE-algebra X. Then ⟨F ∪ {a}⟩ = {x ∈ X | an ∗ x ∈

F for some n ∈ N}. For A = {a}, we will denote ⟨{a}⟩, briefly by ⟨a⟩, we call it
a principal filter of X. If X is self-distributive, then ⟨a⟩ = {x ∈ X | a ∗ x = 1}.
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3. Prime filters of BE-algebras

In this section, some properties of prime filters and maximal filters of BE-
algebra are studied. A necessary and sufficient condition is derived for a proper
filter of a BE-algebra to become a prime filter. Throughout this section, X
stands for a BE-algebra unless otherwise mentioned.

Definition 3.1. A proper filter P of a BE-algebraX is called prime if F∩G ⊆ P
implies F ⊆ P or G ⊆ P for any two filters F and G of X.

Theorem 3.2. A proper filter P of a BE-algebra is prime if and only if ⟨x⟩ ∩
⟨y⟩ ⊆ P implies x ∈ P or y ∈ P for all x, y ∈ X.

Proof. Assume that P is a prime filter ofX. Let x, y ∈ X be such that ⟨x⟩∩⟨y⟩ ⊆
P . Since P is prime, it implies that x ∈ ⟨x⟩ ⊆ P or y ∈ ⟨y⟩ ⊆ P . Conversely,
assume that the condition holds. Let F and G be two filters of X such that
F ∩G ⊆ P . Let x ∈ F and y ∈ G be the arbitrary elements. Then ⟨x⟩ ⊆ F and
⟨y⟩ ⊆ G. Hence ⟨x⟩ ∩ ⟨y⟩ ⊆ F ∩G ⊆ P . Then by the assumed condition, we get
x ∈ P or y ∈ P . Thus F ⊆ P or G ⊆ P . Therefore P is prime. �

Theorem 3.3. Let X be a BE-algebra and F a filter of X. Then for any
a, b ∈ X,

⟨a⟩ ∩ ⟨b⟩ ⊆ F if and only if ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩ = F.

Proof. Assume that ⟨F∪{a}⟩∩⟨F∪{b}⟩ = F for any a, b ∈ X. Since a ∈ ⟨F∪{a}⟩
and b ∈ ⟨F ∪ {b}⟩, we get ⟨a⟩ ⊆ ⟨F ∪ {a}⟩ and ⟨b⟩ ⊆ ⟨F ∪ {b}⟩. Hence, it yields
⟨a⟩∩ ⟨b⟩ ⊆ ⟨F ∪{a}⟩∩⟨F ∪{b}⟩ = F . Therefore, it concludes that ⟨a⟩∩ ⟨b⟩ ⊆ F .

Conversely, assume that ⟨a⟩ ∩ ⟨b⟩ ⊆ F . Clearly F ⊆ ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩.
Let x ∈ ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩. Since F is a filter, there exists m,n ∈ N such
that am ∗ x ∈ F and bn ∗ x ∈ F . Hence, there exists m1,m2 ∈ F such that
am ∗ x = m1 and bn ∗ x = m2. Hence

am ∗ (m1 ∗ x) = m1 ∗ (am ∗ x) = m1 ∗m1 = 1

Hence m1 ∗ x ∈ ⟨a⟩. Similarly, we get m2 ∗ x ∈ ⟨b⟩. Since
m1 ∗ x ≤ m2 ∗ (m1 ∗ x) = m1 ∗ (m2 ∗ x) and m2 ∗ x ≤ m1 ∗ (m2 ∗ x)

we get that m1 ∗ (m2 ∗ x) ∈ ⟨a⟩ and m1 ∗ (m2 ∗ x) ∈ ⟨b⟩. Hence

m1 ∗ (m2 ∗ x) ∈ ⟨a⟩ ∩ ⟨b⟩ ⊆ F

Sincem1,m2 ∈ F and F is a filter, we get x ∈ F . Hence ⟨F∪{a}⟩∩⟨F∪{b}⟩ ⊆ F .
Therefore, it concludes that ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩ = F . �

Definition 3.4. A filter F of a BE-algebra X is called proper if F ̸= X.

Definition 3.5. A proper filter M of a BE-algebra X is called a maximal filter
if ⟨M ∪ {x}⟩ = X for any x ∈ X −M .

Theorem 3.6. Every maximal filter of a BE-algebra is a prime filter.
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Proof. Let M be a maximal filter of a BE-algebra X. Let ⟨x⟩∩⟨y⟩ ⊆ M for some
x, y ∈ X. Suppose x /∈ M and y /∈ M . Then ⟨M∪{x}⟩ = X and ⟨M∪{y}⟩ = X.
Hence

⟨M ∪ {x}⟩ ∩ ⟨M ∪ {y}⟩ = X

Hence, by the Theorem 3.3, it yields that ⟨x⟩∩⟨y⟩ * M , which is a contradiction.
Hence x ∈ M or y ∈ M . Therefore M is a prime filter of X. �

Theorem 3.7. Let X and Y be two BE-algebras and f : X → Y a homo-
morphism such that f(X) is a filter in Y . If F is a prime filter of Y and
f−1(F ) ̸= X, then f−1(F ) is a prime filter of X.

Proof. Since f(1) = 1 ∈ F , we get 1 ∈ f−1(F ). Let x, x ∗ y ∈ f−1(F ). Then
f(x) ∈ F and f(x) ∗ f(y) = f(x ∗ y) ∈ F . Since F is a filter in Y , it yields that
f(y) ∈ F . Hence y ∈ f−1(F ). Therefore f−1(F ) is a filter of X. Let x, y ∈ X
be such that ⟨x⟩ ∩ ⟨y⟩ ⊆ f−1(F ). Let u ∈ ⟨f(x)⟩ ∩ ⟨f(y)⟩. Then there exists
m,n ∈ N such that f(x)n ∗u = 1 ∈ F and f(y)m ∗u = 1 ∈ F . Since f(x) ∈ f(X)
and f(X) is a filter, it implies that u ∈ f(X). Hence u = f(a) for some a ∈ X.
Moreover, f(xn ∗ a) = f(ym ∗ a) = 1 ∈ F because of f is a homomorphism.
Hence

xn ∗ a ∈ f−1(F ) and ym ∗ a ∈ f−1(F ).

Hence

a ∈ ⟨f−1(F ) ∪ {x}⟩ ∩ ⟨f−1(F ) ∪ {y}⟩.
Since ⟨x⟩ ∩ ⟨y⟩ ⊆ f−1(F ), then by Theorem 3.3, we get a ∈ f−1(F ). Hence
u = f(a) ∈ F . It concludes that ⟨f(x)⟩ ∩ ⟨f(y)⟩ ⊆ F . Since F is a prime filter
of Y , we get that ⟨f(x)⟩ ⊆ F or ⟨f(y)⟩ ⊆ F . Thus it yields that f(x) ∈ F or
f(y) ∈ F . Therefore x ∈ f−1(F ) or y ∈ f−1(F ), which concludes that f−1(F )
is a prime filter of X. �

Let us now denote that the class of all filters of a BE-algebra X by F(X).
Then in the following theorem, a necessary and sufficient condition is derived,
in terms of primeness of filters, for the class F(X) to become a chain.

Theorem 3.8. Let X be a BE-algebra. Then F(X) is a totally ordered set or
a chain if and only if every proper filter of X is prime.

Proof. Assume that F(X) is a totally ordered set. Let F be a proper filter of
X. Let a, b ∈ X be such that ⟨a⟩∩⟨b⟩ ⊆ F . Since ⟨a⟩ and ⟨b⟩ are filters of X, we
get that either ⟨a⟩ ⊆ ⟨b⟩ or ⟨b⟩ ⊆ ⟨a⟩. Hence, it concludes that a ∈ F or b ∈ F .
Therefore F is prime.

Conversely assume that every proper filter of X is prime. Let F and G be
two proper filters of X. Since F ∩G is a proper filter of X, we get that

F ⊆ F ∩G or G ⊆ F ∩G

Hence F ⊆ G or G ⊆ F . Therefore F(X) is a totally ordered set. �
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4. Prime filters of commutative BE-algebras

In this section, a condition L is introduced to study the properties of prime
filters of commutative BE-algebras. A set of equivalent conditions is derived for
a commutative BE-algebra to become a totally ordered set.

Proposition 4.1. Let (X, ∗, 1) be a commutative BE-algebra and x, y, z ∈ X.
Then the following conditions hold.
(1) x ∗ (y ∨ z) = (z ∗ y) ∗ (x ∗ y);
(2) x ≤ y implies x ∨ y = y;
(3) z ≤ x and x ∗ z ≤ y ∗ z imply y ≤ x.

Proof. (1). Let x, y, z ∈ X. Then x ∗ (y ∨ z) = x ∗ ((z ∗ y) ∗ y) = (z ∗ y) ∗ (x ∗ y).
(2). Let x ≤ y. Then x∗y = 1. Hence y = 1∗y = (x∗y)∗y = (y ∗x)∗x = x∨y.

(3). Let z ≤ x and x ∗ z ≤ y ∗ z. Then z ∗ x = 1 and (x ∗ z) ∗ (y ∗ z) = 1. Hence

y ∗ x = y ∗ (1 ∗ x)
= y ∗ ((z ∗ x) ∗ x)
= y ∗ ((x ∗ z) ∗ z)
= (x ∗ z) ∗ (y ∗ z)

Therefore, it concludes that y ≤ x. �

Definition 4.2. A BE-algebra X is said to satisfy the condition L if for all
x, y ∈ X, there exists u ∈ X such that u ≤ x and u ≤ y.

Theorem 4.3. Let X be a commutative BE-algebra. Then X satisfies the
condition L if and only if for all x, y ∈ X, the greatest lower bound inf{x, y} =
x ∧ y for brevity, is x ∧ y = [(x ∗ u) ∨ (y ∗ u)] ∗ u where u ≤ x, y.

Proof. Assume that X satisfies the condition L. Let u ≤ x, y. Clearly u ≤ x∧y.
Since x ∗ u ≤ (x ∗ u) ∨ (y ∗ u), we get

[(x ∗ u) ∨ (y ∗ u)] ∗ u ≤ (x ∗ u) ∗ u
= u ∨ x

= x

Hence x∧ y ≤ x. Similarly, we can obtain that x∧ y ≤ y. Hence x∧ y is a lower
bound of x and y. Suppose v is another lower bound for x and y, i.e. v ≤ x, y.
Hence x ∗ u ≤ v ∗ u and y ∗ u ≤ v ∗ u. Hence (x ∗ u) ∨ (y ∗ u) ≤ v ∗ u. Therefore
we get

v ≤ v ∨ u

= (u ∗ v) ∗ v
= (v ∗ u) ∗ u
≤ [(x ∗ u) ∨ (y ∗ u)] ∗ u
= x ∧ y
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Hence x ∧ y is the greatest lower bound of x and y. Converse is clear. �

In the following proposition, some properties of a commutative BE-algebra
with condition L are derived. Throughout this section, X stands for a commu-
tative BE-algebra which satisfies the condition L, unless otherwise mentioned.

Proposition 4.4. Let (X, ∗, 1) be a commutative BE-algebra and x, y, z ∈ X.
Then the following conditions hold.
(1) (x ∨ y) ∗ z = (x ∗ z) ∧ (y ∗ z)
(2) x ∗ (y ∧ z) = (x ∗ y) ∧ (x ∗ z)
(3) x ∗ (x ∧ y) = x ∗ y
(4) (x ∗ y) ∨ (y ∗ x) = 1
(5) (x ∧ y) ∗ z = (x ∗ z) ∨ (y ∗ z)

Proof. (1). Since x, y ≤ x∨y, we get that (x∨y)∗z ≤ x∗z and (x∨y)∗z ≤ y∗z.
Hence (x ∨ y) ∗ z is a lower bound for x ∗ z and y ∗ z. Let u be a lower bound
for x ∗ z and y ∗ z. Hence u ≤ x ∗ z and u ≤ y ∗ z and so x ≤ u ∗ z and y ≤ u ∗ z.
Therefore x ∨ y ≤ u ∗ z and thus u ≤ (x ∨ y) ∗ z. Therefore (x ∨ y) ∗ z is the
greatest lower bound for x ∗ z and y ∗ z. Hence (x ∨ y) ∗ z = (x ∗ z) ∧ (y ∗ z).
(2). Let x, y, z ∈ X. By the Theorem 4.3, we know that y∧z = ((y∗u)∨(z∗u))∗u
where u ≤ y, z. Since u ≤ y, we get that (y ∗ u) ∗ u = (u ∗ y) ∗ y = 1 ∗ y = y.
Similarly, we get that (z ∗ u) ∗ u = z. Hence we get that

x ∗ (y ∧ z) = x ∗ [((y ∗ u) ∨ (z ∗ u)) ∗ u] where u ≤ y, z

= ((y ∗ u) ∨ (z ∗ u)) ∗ (x ∗ u)
= ((y ∗ u) ∗ (x ∗ u)) ∧ ((z ∗ u) ∗ (x ∗ u)) by (1)

= (x ∗ ((y ∗ u) ∗ u)) ∧ (x ∗ ((z ∗ u) ∗ u))
= (x ∗ y) ∧ (x ∗ z)

(3). By replacing y by x and z by y in (2), we get

x ∗ (x ∧ y) = (x ∗ x) ∧ (x ∗ y) = 1 ∧ (x ∗ y) = x ∗ y.

(4). Let x, y, z ∈ X. Then

(x ∗ y) ∨ (y ∗ x) = ((y ∗ x) ∗ (x ∗ y)) ∗ (x ∗ y)
= ((y ∗ (y ∧ x)) ∗ (x ∗ (x ∧ y))) ∗ (x ∗ y)
= ((y ∗ (y ∧ x)) ∗ (x ∗ (y ∧ x))) ∗ (x ∗ y)
= (x ∗ ((y ∗ (y ∧ x)) ∗ (y ∧ x))) ∗ (x ∗ y)
= (x ∗ (((y ∧ x) ∗ y) ∗ y)) ∗ (x ∗ y)
= (x ∗ (1 ∗ y)) ∗ (x ∗ y) since y ∧ x ≤ y

= (x ∗ y) ∗ (x ∗ y)
= 1

(5). By using the dual argument, it can be followed by (1). �
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Definition 4.5. A filter P of a commutative BE-algebra is called prime if
x ∨ y ∈ P implies x ∈ P or y ∈ P for all x, y ∈ F .

Lemma 4.6. Let X be a self-distributive and commutative BE-algebra. Then
for any a, b ∈ X, the following conditions hold:
(1) a ≤ b implies ⟨b⟩ ⊆ ⟨a⟩
(2) ⟨a ∨ b⟩ = ⟨a⟩ ∩ ⟨b⟩.

Proof. (1). Suppose a ≤ b. Let x ∈ ⟨b⟩. Then b ∗ x = 1. Hence 1 = b ∗ x ≤ a ∗ x.
Thus it yields that x ∈ ⟨a⟩. Therefore ⟨b⟩ ⊆ ⟨a⟩.
(2). Since a, b ≤ a ∨ b, we get that ⟨a ∨ b⟩ ⊆ ⟨a⟩ and ⟨a ∨ b⟩ ⊆ ⟨b⟩. Hence
⟨a∨b⟩ ⊆ ⟨a⟩∩⟨b⟩. Conversely, let x ∈ ⟨a⟩∩⟨b⟩. Then a∗x = b∗x = 1. Since X is
commutative, by proposition 4.4(1), we get (a∨b)∗x = (a∗x)∧(b∗x) = 1∧1 = 1.
Hence x ∈ ⟨a ∨ b⟩. Thus ⟨a⟩ ∩ ⟨b⟩ ⊆ ⟨a ∨ b⟩. Therefore ⟨a ∨ b⟩ = ⟨a⟩ ∩ ⟨b⟩. �

In the following theorem, the class of all prime filters of a commutative BE-
algebra is characterized in terms of principal filters.

Theorem 4.7. Let X be a self-distributive and commutative BE-algebra and P
a proper filter of X. Then the following conditions are equivalent.
(1) P is prime;
(2) For any two filters F and G of X, F ∩G ⊆ P implies F ⊆ P or G ⊆ P ;
(3) For any x, y ∈ X, ⟨x⟩ ∩ ⟨y⟩ ⊆ P implies x ∈ P or y ∈ P .

Proof. The equivalency between (2) and (3) is proved in Theorem 3.2.

(1) ⇒ (2): Assume that P is a prime filter of X. Let F and G be two filters
of X such that F ∩ G ⊆ P . Without loss of generality, assume that F * P .
Then there exists a ∈ X such that a ∈ F and a /∈ P . Let b ∈ G be an arbitrary
element. Clearly ⟨a⟩ ∩ ⟨b⟩ = F ∩ G ⊆ P . Hence ⟨a ∨ b⟩ ⊆ F ∩ G ⊆ P . Thus
a ∨ b ∈ P . Since P is prime and a /∈ P , we get that b ∈ P . Therefore G ⊆ P .

(2) ⇒ (1): Assume that the condition (2) holds. Let x, y ∈ X be such that
x ∨ y ∈ P . Then we get that ⟨x⟩ ∩ ⟨y⟩ ⊆ P . Hence, by condition (2), either
⟨x⟩ ⊆ P or ⟨y⟩ ⊆ P . Therefore x ∈ P or y ∈ P . �

The following theorem provides another characterization of prime filters in
commutative BE-algebras with condition L.

Theorem 4.8. Let X be a commutative BE-algebra with condition L and F a
filter of X. Then F is prime if and only if x∗y ∈ F or y∗x ∈ F for all x, y ∈ X.

Proof. Assume that F is a a prime filter in X. Since (x∗y)∨ (y ∗x) = 1 ∈ F , we
get either x ∗ y ∈ F or y ∗x ∈ F . Conversely, assume that x ∗ y ∈ F or y ∗x ∈ F
for all x, y ∈ X. Let x∨ y ∈ F . Suppose x ∗ y ∈ F . Then (x ∗ y) ∗ y = y ∨x ∈ F .
Since F is a filter and x ∗ y ∈ F , we get that y ∈ F . Suppose y ∗ x ∈ F . Then
(y ∗ x) ∗ x = x∨ y ∈ F . Since F is a filter and y ∗ x ∈ F , we get that x ∈ F . �

The following extension property of prime filters is a direct consequence of
the above theorem.
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Corollary 4.9. Let X be a commutative BE-algebra with condition L and F a
prime filter of X. If G is a filter of X such that F ⊆ G, then G is also prime.

Theorem 4.10. Let X be a commutative BE-algebra with condition L. Then
the following conditions are equivalent.
(1) Every proper filter is a prime filter;
(2) The filter {1} is a prime filter;
(3) X is a totally ordered set with respect to BE-ordering.

Proof. (1) ⇒ (2): It is obvious.

(2) ⇒ (3): Assume that {1} is a prime filter. Let x, y ∈ X. Since {1} is prime,
we get that either x ∗ y ∈ {1} or y ∗ x ∈ {1}. Hence x ≤ y or y ≤ x. Therefore
X is totally ordered.

(3) ⇒ (1): Assume that X is a totally ordered set with respect to BE-ordering
≤. Let F be a proper filter of X. Let x, y ∈ X. Hence x ≤ y or y ≤ x and thus
x ∗ y = 1 ∈ F or y ∗ x = 1 ∈ F . Therefore F is prime. �
Theorem 4.11. Let F be a filter of a commutative BE-algebra with condition
L. For any x, y ∈ X, define a relation θ on X by

(x, y) ∈ θ if and only if x ∗ y ∈ F andy ∗ x ∈ F

Then θ is a congruence on X.

Proof. Clearly θ is reflexive and symmetric. Let x, y, z ∈ X be such that (x, y) ∈
θF and (y, z) ∈ θ. Then x ∗ y ∈ F, y ∗ x ∈ F, y ∗ z ∈ F and z ∗ y ∈ F .
Since y ∗ z ∈ F , we get x ∗ (y ∗ z) ∈ F . By a known property of filters, we
get {[x ∗ (y ∗ z)] ∗ [(x ∗ y) ∗ (x ∗ z)]} = 1 ∈ F . Since x ∗ (y ∗ z) ∈ F and
x ∗ y ∈ F , we get x ∗ z ∈ F . Similarly, we get z ∗ x ∈ F . Thus (x, z) ∈ θ.
Therefore θ is an equivalence relation on X. Let (x, y) ∈ θ and (u, v) ∈ θ.
Then x ∗ y ∈ F, y ∗ x ∈ F, u ∗ v ∈ F and v ∗ u ∈ F . Since x ∗ y ∈ F , we get
(u∗x)∗(u∗y) = u∗(x∗y) ∈ F . Since y∗x ∈ F , we get (u∗y)∗(u∗x) = u∗(y∗x) ∈ F .
Hence (u ∗ x, u ∗ y) ∈ θ. Again,

(v ∗ y) ∗ (u ∗ y) = u ∗ ((v ∗ y) ∗ y)
= (u ∗ (v ∗ y)) ∗ (u ∗ y)
= ((u ∗ v) ∗ (u ∗ y)) ∗ (u ∗ y)

Hence

(u ∗ v) ∗ ((v ∗ y) ∗ (u ∗ y)) = (u ∗ v) ∗ (((u ∗ v) ∗ (u ∗ y)) ∗ (u ∗ y))
= ((u ∗ v) ∗ (u ∗ y)) ∗ ((u ∗ v) ∗ (u ∗ y))
= 1 ∈ F

Since u ∗ v ∈ F , we get (v ∗ y) ∗ (u ∗ y) ∈ F . Similarly (u ∗ y) ∗ (v ∗ y) ∈ F . Hence
(u ∗ y, v ∗ y) ∈ θ. Thus (u ∗ x, v ∗ y) ∈ θ. Hence θ is a congruence on X. �

For any commutative BE-algebraX, let Cx be the congruence class generated
by x ∈ X, i.e. Cx = {y ∈ X | x is congruent to y}. Define X/F = {Cx | x ∈ F}.
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Then clearly X/F is a commutative BE-algebra with respect to the operation ∗
defined on X/F as follows:

Cx ∗ Cy = Cx∗y for all x, y ∈ X

It can also be observed that, for any x, y ∈ X, Cx ≤ Cy if and only if Cx∗Cy = C1

is a BE-ordering on X/F .

Theorem 4.12. Let X be a commutative BE-algebra with condition L and F
a proper filter of X. Then F is prime if and only if X/F is a totally ordered
set(chain).

Proof. Assume that F is a prime filter in X. Then x ∗ y ∈ F or y ∗ x ∈ F for all
x, y ∈ X. If x ∗ y ∈ F , then Cx ∗Cy = Cx∗y = C1. Hence Cx ≤ Cy. If y ∗ x ∈ F ,
then similar argument yields Cy ≤ Cx. Therefore X/F is a totally ordered set.
Conversely, assume that X/F is a totally ordered set. Let x, y ∈ X. then clearly
Cx ≤ Cy or Cy ≤ Cx. Hence Cx∗y = Cx ∗ Cy = C1 or Cy∗x = Cy ∗ Cx = C1.
Thus, it yields x ∗ y ∈ F or y ∗ x ∈ F . Therefore F is a prime filter in X. �

5. The space of prime filters of BE-algebras

In this section, some topological properties of the space of all prime filters of
BE-algebras are studied. A necessary and sufficient condition is derived for a
prime filter of a BE-algebra to become maximal.

Theorem 5.1. Let X ba a BE-algebra and a ∈ X. If F is a filter in X such
that a /∈ F , then there exists a prime filter P such that a /∈ P and F ⊆ P .

Proof. Let F be a filter of X such that a /∈ F . Consider ℑ = {G ∈ F(X) | a /∈
G and F ⊆ G}. Clearly F ∈ ℑ. Then by the Zorn’s Lemma, ℑ has a maximal
element, say M . Clearly a /∈ M . We now prove that M is prime. Let x, y ∈ X
be such that ⟨x⟩ ∨ ⟨y⟩ ⊆ M . Then by Theorem 3.3, we get

⟨M ∪ {x}⟩ ∩ ⟨M ∪ {y}⟩ = M

Since a /∈ M , we can obtain that a /∈ ⟨M ∪ {x}⟩ or a /∈ ⟨M ∪ {y}⟩. By the
maximality of M , we get that ⟨M ∪{x}⟩ = M or ⟨M ∪{y}⟩ = M . Hence x ∈ M
or y ∈ M . Therefore M is prime. �
Corollary 5.2. Let X be a commutative BE-algebra and 1 ̸= a ∈ X. Then
there exists a prime filter P such that a /∈ P .

Let X be a commutative BE-algebra and SpecF (X) denote the set of all
prime filters of X. For any A ⊆ X, let K(A) = {P ∈ SpecF (X) | A * P} and
for any x ∈ L,K(x) = K({x}). Then we have the following observations:

Lemma 5.3. Let X be a commutative BE-algebra with condition L. For any
x, y ∈ L, the following holds:
(1) K(x) ∩K(y) = K(x ∨ y)
(2) K(x) ∪K(y) = K(x ∧ y)
(3) K(x) = ∅ ⇔ x = 1
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Proof. (1). Let P ∈ SpecF (X) be such that P ∈ K(x)∩K(y). Then x /∈ P and
y /∈ P . Since P is prime, we get x ∨ y /∈ P . Hence P ∈ K(x ∨ y). Therefore
K(x) ∩ K(y) ⊆ K(x ∨ y). Conversely, assume that P ∈ SpecF (X). Suppose
P ∈ K(x ∨ y). Hence x ∨ y /∈ P . If x ∈ P , then x ∨ y ∈ P because of x ≤ x ∨ y.
Thus it yields that x /∈ P . Therefore P ∈ K(x). Similarly, we get P ∈ K(y).
Hence P ∈ K(x) ∩K(y). Therefore K(x ∨ y) ⊆ K(x) ∩K(y).

(2). Let P ∈ SpecF (X) be such that P ∈ K(x) ∪ K(y). Then P ∈ K(x) or
P ∈ K(y). Hence x /∈ P or y /∈ P . If x ∧ y ∈ P , then we get that both x and y
must be in P . Hence x ∧ y /∈ P . Thus P ∈ K(x ∧ y). Therefore K(x) ∪K(y) ⊆
K(x ∧ y). Conversely, let P ∈ SpecF (X) be such that P ∈ K(x ∧ y). Then
x∧ y /∈ P . Since x∧ y is the g.l.b of x and y, it concludes that x /∈ P and y /∈ P .
Hence P ∈ K(x) ∪K(y). Therefore K(x ∧ y) ⊆ K(x) ∪K(y).

(3). Since {1} ⊆ P for all P ∈ SpecF (X), it is obvious. �

Proposition 5.4. For any commutative BE-algebra X,
∪

x∈X

K(x) = SpecF (X).

Proof. Let P ∈ SpecF (X). Since P is a proper filter, there exists a ∈ X such
that a /∈ P . Hence P ∈ K(a) ⊆

∪
x∈X

K(x). Therefore SpecF (X) ⊆
∪

x∈X

K(x).

Clearly
∪

x∈X

K(x) ⊆ SpecF (X). Therefore
∪

x∈X

K(x) = SpecF (X). �

Form the above proposition, it can be seen that {K(x) | x ∈ X} forms a
covering of SpecF (X). Hence {K(x) | x ∈ X} is an open base for a topology
on SpecF (X) which is called a hull-kernel technology . In the following, we will
discuss the properties of this topology.

Lemma 5.5. Let X be a commutative BE-algebra. Then the following hold.
(1) For any x ∈ X,K(⟨x⟩) = K(x);
(2) For any two filters F,G of X, K(F ) ∩K(G) = K(F ∩G).

Proof. (1) Let P ∈ SpecF (X) be such that P ∈ K(⟨x⟩). Then ⟨x⟩ * P . Hence
x /∈ P . Therefore P ∈ K(x). Thus K(⟨x⟩) ⊆ K(x). Conversely, let P ∈ K(x).
Then x /∈ P . Hence ⟨x⟩ * P . Therefore P ∈ K(⟨x⟩). Hence K(x) ⊆ K(⟨x⟩).
Therefore K(⟨x⟩) = K(x).

(2). Let P ∈ SpecF (X) be an arbitrary prime filter. Let P ∈ K(F ) ∩ K(G).
Then F * P and G * P . Then there exists x ∈ F and y ∈ G such that x /∈ P
and y /∈ P . Since P is prime, we get x ∨ y /∈ P . Since F and G are filters, we
get that x ∨ y ∈ F ∩ G. Hence F ∩ G * P . Then P ∈ K(F ∩ G). Therefore
K(F )∩K(G) ⊆ K(F ∩G). The opposite inclusion is obvious. Therefore K(F )∩
K(G) = K(F ∩G). �

Lemma 5.6. Let F be a filter of a commutative BE-algebra X and x ∈ X.
Then x ∈ F if and only if K(x) ⊆ K(F ).

Proof. Let F be a filter of a commutative BE-algebra X and x ∈ X. Assume
that x ∈ F . Let P ∈ SpecF (X) be such that P ∈ K(x). Then we get that
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x /∈ P . Hence F * P . Therefore P ∈ K(F ).

Conversely, assume that K(x) ⊆ K(F ). Suppose x /∈ F . Then by Theorem
5.1, there exists P ∈ SpecF (X) such that x /∈ P and F ⊆ P . Hence, we get that
P ∈ K(x) and P * K(F ). Therefore K(x) ( K(F ), which is a contradiction.
Hence, it concludes that x ∈ F . �

Theorem 5.7. Let X be a commutative BE-algebra. Then for any x ∈ L, K(x)
is compact in SpecF (X).

Proof. Let x ∈ X. Let A ⊆ X be such that K(x) ⊆
∪

y∈A

K(y). Let F be the

filter generated by A. Suppose x /∈ F . Then there exists a prime filter P of X
such that F ⊆ P and x /∈ F . Hence P ∈ K(x) ⊆

∪
y∈A

K(y). Therefore y /∈ P

for some y ∈ A, which is a contradiction (because of y ∈ A ⊆ F ⊆ P ). Hence
x ∈ F . Then there exist a1, a2, ..., an ∈ A such that

an ∗ (...(a1 ∗ x)...) = 1

Let P ∈ K(x). Then x /∈ P . Suppose ai ∈ P for all i = 1, 2, ..., n. Since
an ∗ (...(a1 ∗ x)...) = 1 ∈ P and P is a filter, we get that x ∈ P , which is a
contradiction. Hence ai /∈ P for some i = 1, 2, ..., n. Hence P ∈ K(ai) for some

ai. Therefore P ∈
n∪

i=1

K(ai). Hence K(x) ⊆
n∪

i=1

K(ai), which is a finite subcover

of K(x). Hence K(x) is compact in SpecF (X). Therefore for each x ∈ X, K(x)
is a compact open subset of SpecF (X). �

Theorem 5.8. Let X be a commutative BE-algebra with condition L and C a
compact open subset of SpecF (X). Then C = K(x) for some x ∈ X.

Proof. Let C be a compact open subset of SpecF (X). Since C is open, we get
C =

∪
a∈A

K(a) for some A ⊆ X. Since C is compact, there exists a1, a2, ..., an ∈ A

such that

C =
n∪

i=1

K(ai) = K(
n∧

i=1

ai)

Therefore C = K(x) for some x ∈ L. �

Corollary 5.9. For any commutative BE-algebra X with condition L, the set
{K(x) | x ∈ X} is an open base for the prime space SpecF (X).

Theorem 5.10. Let X be a commutative BE-algebra with condition L. Then
SpecF (X) is a T0-space.

Proof. Let P and Q be two distinct prime filters of X. Without loss of generality
assume that P * Q. Choose x ∈ L such that x ∈ P and x /∈ Q. Hence P /∈ K(x)
and Q ∈ K(x). Therefore SpecF (X) is a T0-space. �

The following corollary is a direct consequence of the above results.
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Corollary 5.11. The map x 7→ K0(x) is an anti-homomorphism from X onto
the lattice of all compact open subsets of SpecF (X).

For any A ⊆ X, denote H(A) = {P ∈ SpecF (X) | A ⊆ P}. Then clearly
H(A) = SpecF (X) −K(A). Therefore H(A) is a closed set in SpecF (L). Also
every closed set in SpecF (L) is of the form H(A) for some A ⊆ X. Then we
have the following:

Theorem 5.12. The closure of any Y ⊆ SpecF (X) is given by Y = H(
∩

P∈Y

(P )).

Proof. Let Y ⊆ SpecF (X). Let Q ∈ Y . Then
∩

P∈Y

P ⊆ Q. Thus Q ∈ H(
∩

P∈Y

P ).

Therefore H(
∩

P∈Y

P ) is a closed set containing Y . Let C be any closed set in

SpecF (X). Then C = H(A) for some A ⊆ X. Since Y ⊆ C = H(A), we
get that A ⊆ P for all P ∈ Y . Hence A ⊆

∩
P∈Y

P . Therefore H(
∩

P∈Y

P ) ⊆

H(A) = C. Hence H(
∩

P∈Y

P ) is the smallest closed set containing Y . Therefore

Y = H(
∩

P∈Y

P ). �

Theorem 5.13. For any commutative BE-algebra X with condition L, SpecF (X)
is a T1-space if and only if every prime filter is maximal.

Proof. Assume that SpecF (X) is a T1-space. Let P be a prime filter of X.
Suppose there exists a proper filter Q of X such that P ⊆ Q. Since SpecF (X)
is a T1-space, there exists two basic open sets K(x) and K(y) such that P ∈
K(x)−K(y) and Q ∈ K(y)−K(x). Since P /∈ K(y), we get y ∈ P ⊂ Q, which
is a contradiction to that Q ∈ K(y). Hence P is a maximal filter.

Conversely, assume that every prime filter is a maximal filter. Let P1 and P2

be two distinct elements of SpecF (X). Hence by the assumption, both P1 and
P2 are maximal filters in X. Hence P1 * P2 and P2 * P1. Then there exists
a, b ∈ X be such that a ∈ P1 − P2 and b ∈ P2 − P1. Hence P1 ∈ K(b) −K(a)
and P2 ∈ K(a)−K(b). Therefore SpecF (X) is a T1-space. �
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