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A DELAY DYNAMIC MODEL FOR HIV INFECTED IMMUNE

RESPONSE

S.P. BERA, A. MAITI AND G.P. SAMANTA∗

Abstract. Human Immune Deficiency Virus (or simply HIV) induces a
persistent infection that leads to AIDS causing death in almost every in-
fected individual. As HIV affects the immune system directly by attacking

the CD4+ T cells, to exterminate the infection, the natural immune sys-
tem produces virus-specific cytotoxic T lymphocytes(CTLs) that kills the
infected CD4+ T cells. The reduced CD4+ T cell count produce reduced
amount of cytokines to stimulate the production of CTLs to fight the in-

vaders that weakens the body immunity succeeding to AIDS. In this paper,
we introduce a mathematical model with discrete time-delay to represent
this cell dynamics between CD4+ T cells and the CTLs under HIV in-
fection. A modified functional form has been considered to describe the

infection mechanism. Characteristics of the system are studied through
mathematical analysis. Numerical simulations are carried out to illustrate
the analytical findings.
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1. Introduction

CD4+ T cells or Helper T cells play the key role in human immune sys-
tem. When human body recognizes foreign antigen, it is delivered to the lymph
system, where the virious and infected cells are ingested by macrophage. This
macrophage, which tags itself for destruction, displays the antigens on its own
exterior. The CD4+ T cells identify this protein tag on the macrophage and
produce cytokines to stimulate the production of virus-specific cytotoxic T lym-
phocytes (CTLs), also known as killer T cell, that denature the foreign body
and exterminate the infection [7, 8, 19].
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The interaction between HIV and immune system is different from any other
virus and it is also more complex. While immune responses have the potential
to fight the virus, HIV disrupts the natural immune process by directly infecting
the helper T-cells. Initially immune response does get rid of a great deal of HIV,
but some of it manages to survive and infect these important cells. Once the
infected helper T-cells are activated, they work to create new virious instead of
doing the job they are supposed to do in natural immune system. The virus
uses CD4+ T cells to replicate. The CTLs then destroy the viral load and
infected cells in the process. Because of this the CD4 count fall rapidly and
eventually the level of virus in human body back down. Normal CD4 counts
are between 800 and 1,200 cells/mm3. As the number of CD4 cells begins to
fall below 200 cells per cubic millimeter of blood, the infected person will be
diagnosed as having AIDS or Acquired Immune Deficiency Syndrome. As the
immune system is badly damaged, the victim become vulnerable to opportunistic
infections. Without treatment, people who are diagnosed with AIDS typically
survive about 3 years. Once someone has a dangerous opportunistic infection,
life-expectancy falls to about 1 year.

According to UNAIDS [1] and amfAR, an estimated 35.3 (32.2 - 38.8) million
people were living with HIV in 2012 and 3.3 million of them are under the age
of 15, globally. There were 2.3 (1.9 - 2.7) million new HIV infections globally
including 260,000 under the age of 15. Every day nearly 6,300 people contract
HIV i.e. nearly 262 every hour. In 2012 the number of AIDS deaths was 1.6 (1.4
- 1.9) million. 210,000 of them were under the age of 15. Since the beginning
of the epidemic, more than 75 million people have contracted HIV and nearly
36 million have died of HIV-related causes. About 25 million (i.e. 70 percent
of all people living with HIV worldwide) live in sub-Saharan Africa-including 88
percent of the worlds HIV-positive children. In 2012 it was estimated that 1.6
million people in this region became newly infected, and about 1.2 million adults
and children died of AIDS, accounting for 75 percent of the worlds AIDS deaths.
In India, the number of people living with HIV was 2,100,000 in 2012; and
during the year, deaths due to AIDS was 140,000. Till now there is no complete
cure from AIDS. Though HAART (i.e. highly active retroviral therapy) is very
effective in blocking HIV spread within the body, it is not a cure as the viral
loads readily rebound when treatment is interrupted [37]. Furthermore, ultra-
sensitive detection assays have shown that a low-level viraemia persists even
after years of therapy [12]. This therapy can involve a complicated medication
regime including many drugs and has unpleasant side effects [5, 7, 11, 16]. The
only way to prevent the disease is to avoid the contact with the virus.

Over the years, mathematical models using differential equations have been
used to gain an understanding of HIV dynamics and the models have evolved
over time including more parameters [27, 29, 34, 35]. These models help us
identifying important parameters and factors which have dominant effect on the
development, transmission and spread of the disease. These give a better under-
standing for development of treatment strategies and we can draw biologically
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relevant interpretations. The initial models were introduced by May and An-
derson [2, 24]. Bonhoeffer et al. [7, 8] started with a basic model and went on
to include the development of drug resistant virus. Bachar and Dorfmayr [4]
shows that treatment without reduction of risky behaviours may even increase
the proportion of infected population. Several refinements have been added into
modelling frameworks of HIV/AIDS and specific issues have been addressed by
researchers [13, 38]. Work has also been done on characterizing HIV dynamics
incorporating virus resistance [26]. Gumel et al. [18] proposed an HIV vac-
cine model that considers possible vaccine induced bypass of primary infection
and reversal from AIDS to chronic stage of infection together with staged pro-
gression and transmission by AIDS patients. Cai et al. [10] have developed a
stage-structured HIV/AIDS epidemic model with treatment. Vergu et al.[36]
showed the impact of viral diversity on the immune response and disease dy-
namics. Nelson et al. [25] included less than perfect drug effects and a delay in
the initiation of virus production. Stafford et al.[33] suggested that cytotoxic T
lymphocytes (CTLs) productively destruct infected cells and is responsible for
lowering the viral load.

However, none of these papers have included immune response as a specific
component. Wodarz and Nowak [39] assumed that treatment negatively affects
the immune response cell in their four dimensional epidemiological model with
the viral load and immune response as two different population. They conclude
that, if therapy be interrupted to rebuild the immune response, the immune
system would be beneficial to the long term clinical outcome of the patient.
Culshaw et al. [15] consider a optimal treatment model in which the interaction
between HIV and the specific immune response has been measured by the levels
of natural killer cells.

Time-delays play important roles in epidemiological models, and time-delays
can arise in almost every situation in epidemiology (Hethcote et al. [21]. The
first model that include ‘intracellular’ delay was developed by Herz et al.[20].
They reported that including a delay, estimated value of viral clearance load
was changed, but the productively infected T cell loss was unchanged. Culshaw
and Ruan [14] considered the time-delay between infection of a CD4+ T-cell
and the emission of viral particles. Perelson et al.[28] have considered two types
of time delays: (i) pharmacological delay that occurs between the ingestion of
drug and its appearance within cells and (ii) intracellular delay between ini-
tial infection of a cell by HIV and the release of new virion. The latter type
of time-delay is also considered by Samanta [30, 31, 32]. Cai et al. [10] have
considered HIV/AIDS model with two infective stages before full blown AIDS
by introducing a time-delay of treatment effect, i.e. the delay between the time
from the start of treatment in the symptomatic stage until the treatment ef-
fect becomes visible. Time-delay is also used to model the gestation lag, the
incubation time for a infectious vector, etc. Delay differential equations exhibit
much more complicated dynamics than ordinary differential equations since a
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time-delay could cause a stable equilibrium to become unstable and cause the
population to fluctuate.

The main aim of this paper is to describe internal HIV dynamics between
CD4+ T cells and the immune response cells (i.e. CTLs) of an untreated in-
dividual. We have taken three populations in our model–the healthy CD4+ T
cells, the infected CD4+ T cells and CTLs. A modified functional form of infec-
tion rate have been used to get a better insight. We perform a stability analysis
and supplement our theoretical results by numerical simulations. The time-lag
between the infection of a CD4+ T cell and the attack of such an infected cell
by CTLs has been considered. A brief discussion concludes the paper.

2. The basic model

Here we present an ODE model of the dynamics of an HIV-infected immune
system. In this model, we consider x(t) and y(t) as the populations of uninfected
and infected CD4+ T cells at time t, respectively. Usually, a mass action interac-
tion is considered as the infection mechanism in epidemic models. But according
to Hwang and Kuang [22] when the rate of infection is slow, the mass action

term bxy should be replaced by b

(
x

x+ y

)
y. As the HIV infection progression

remains very slow for a long period, we consider this modification of infection
mechanism. As free virus is thought to be short lived relative to infected cells
[3], we consider the viral load proportional to the infected cells. We take z(t)
as the population of immune response cell (i.e. of CTLs). A single pool of im-
mune response, proportional to the infection level, has been considered and it
is dependent upon both the CD4+ T cells as well as levels of CTLs themselves.
It is also assumed that there is a time-lag τ between production of the CTLs to
destroy the infected CD4+ T cell and receiving the signal that a cell has been
infected. They remain in this stage of development for τ units of time, decaying
exponentially at the rate −µτ .

The system is defined as follows:

dx

dt
= r − ax− bxy

x+ y
,

dy

dt
=

cxy

x+ y
− dy − pyz,

dz

dt
= qx(t− τ)y(t− τ)z(t− τ)e−µτ −mz.

(2.1)

Here r is the source term and a is the natural death rate for healthy CD4+T
cells. b is the rate at which they are being infected by HIV. c is the rate at
which an infected CD4+T cell becomes infectious. The death rate of an infected
CD4+T cell other than by CTLs is represented by d. p is the rate at which the
infected cells are killed by CTLs. q is a generation constant for CTL pool and
m represents the natural death rate for CTLs.
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The rest of the paper is organized as follows. In next section positivity and
boundedness of solutions of the model (2.1) is discussed. Dynamical behaviours
i.e. existence of equilibrium points and stability there are presented in section
4. The stability analysis of the model in presence of time-delay investigated in
section 5. In section 6, the analytical findings are verified through computer sim-
ulations. Section 7 contains the general discussions of the paper and biological
implications of our mathematical findings.

3. Non-negativity and boundedness

Model (2.1) is a system of delay differential equations. Hence initial functions
need to be specified. Let X = C([−τ, 0];R3) be the Banach space of continuous
mapping from [−τ, 0] → R equipped with the sup-norm. By the fundamental
theory of functional differential equation (FDE) we know that, there is a unique
solution (x(t), y(t), z(t)) of system (2.1) with initial conditions

(x(θ), y(θ), z(θ)) ∈ X. (3.1)

For biological reasons, the initial conditions are assumed to be non-negative, i.e.

x(θ) > 0, y(θ) ≥ 0, z(θ) ≥ 0, ∀θ ∈ [−τ, 0]. (3.2)

The following theorem gives the criterion for boundedness and positivity of
the system (2.1).

Theorem 3.1. All solutions of the system (2.1) satisfying conditions (3.1) and
(3.2) are non-negative and bounded for all t ≥ 0 at which the solution exists.

Proof. Since the right hand side of system (2.1) is completely continuous and
locally Lipschitzian on C, the solution (x(t), y(t), z(t)) of (2.1) with initial con-
ditions (3.1) and (3.2) exists and is unique on [0, ζ), where 0 < ζ ≤ +∞. Now,
we show that x(t) > 0 for all t ∈ [0, ζ), where 0 < ζ ≤ +∞. Otherwise, there
exists a t1 ∈ [0, ζ) such that x(t1) = 0, ẋ(t1) < 0 and x(t) > 0 for all t ∈ [0, t1).
From the first equation of (2.1), we have:

ẋ(t1) = r − ax(t1)−
bx(t1)y(t1)

x(t1) + y(t1)
= r > 0, assuming y(t1) ̸= 0,

which is a contradiction with ẋ(t1) < 0. So x(t) > 0 for all t ≥ 0.
Next, we show that y(t) ≥ 0 for all t ∈ [0, ζ), where 0 < ζ ≤ +∞. Otherwise,

there exists a t2 ∈ [0, ζ) such that y(t2) = 0, ẏ(t2) < 0 and y(t) ≥ 0 for all t ∈
[0, t2]. From the second equation of (2.1), we have:

ẏ(t2) =
cx(t2)y(t2)

x(t2) + y(t2)
− dy(t2)− py(t2)z(t2) = 0,

which is a contradiction with ẏ(t2) < 0. So y(t) ≥ 0 for all t ≥ 0.
Finally, we must have z(t) ≥ 0 for all t ∈ [0, ζ), where 0 < ζ ≤ +∞. Oth-

erwise, there exists a t3 ∈ [0, ζ) such that z(t3) = 0, ż(t3) < 0 and z(t) ≥
0 for all t ∈ [0, t3]. From the third equation of (2.1), we have:

ż(t3) = qx(t3−τ)y(t3−τ)z(t3−τ)e−µτ −mz(t3) = qx(t3−τ)y(t3−τ)z(t3−τ)e−µτ ≥ 0,
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which is a contradiction with ż(t3) < 0. So z(t) ≥ 0 for all t ≥ 0. Therefore,

x(t) > 0, y(t) ≥ 0 and z(t) ≥ 0, ∀ t ≥ 0. (3.3)

Let (x(t), y(t), z(t)) ∈ R3
+ be any solution of the system (2.1). Since

dx

dt
≤ r − ax,

we obtain

0 < x(t) ≤ r

a
+ x(0)e−at.

Then for any given ϵ > 0, ∃ tϵ > 0 such that x(t) < r
a + ϵ, ∀t > tϵ.

Let us define

W (t) = cx(t) + by(t) + sz(t+ τ), where s =
bpeµτ

q( ra + ϵ)
.

By non-negativity of the solutions we have

dW

dt
≤ cr − acx(t)− bdy(t)−msz(t+ τ),

≤ cr − δW, where δ = min{a, d,m}.

Therefore
dW

dt
+ δW < cr.

Applying a theorem on differential inequality by Birkhoff and Rota [9] we obtain

0 < W (t) ≤ rc

δ
+
W (0)

eδt
,

and for t→ ∞
0 < W ≤ rc

δ
.

This implies that W(t) is bounded and hence x(t), y(t), z(t) is also bounded.
This completes the proof. �

4. Dynamics in absence of time delay (τ = 0)

4.1. Boundary equilibria and stability. Before studying the model (2.1),
we consider the situation with no time-delay (i.e.τ = 0). Then the system (2.1)
reduced to:

dx

dt
= r − ax− bxy

x+ y
,

dy

dt
=

cxy

x+ y
− dy − pyz,

dz

dt
= qxyz −mz.

(4.1)

The following lemma gives all the boundary equilibrium points of the system
(4.1).
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Lemma 4.1. The system (4.1) always has the axial equilibrium point E1(
r
a , 0, 0).

The boundary equilibrium point E2(x̂, ŷ, 0) exists if and only if c > d. When this
condition is satisfied, x̂,ŷ are given by

x̂ =
rc

(a+ b)c− bd
, ŷ =

rc(c− d)

cd(a+ b)− bd2
.

The variational matrix V (E1) at E1 is given by

V (E1) =

−a 0 0
0 c− d 0
0 0 −m

 .
The eigenvalues of V (E1) are −a,−(d − c),−m. If c < d (i.e. if the rate at
which an infected CD4+ T cell becomes infectious is less than the natural death
rate of CTLs), then an asymptotically stable steady state exists with no infected
CD4+ T cell.

The eigenvalues of V (E1) are −a,−(d − c),−m. If c < d (i.e. if the rate at
which an infected CD4+ T cell becomes infectious is less than the natural death
rate of CTLs), then an asymptotically stable steady state exists with no infected
CD4+ T cell.

The variational matrix V (E2) at the equilibrium point E2(x̂, ŷ, 0) is given by

V (E2) =


−a− b(c−d)2

c2 − bd2

c2 0
(c−d)2

c −d(c−d)
c − cpr(c−d)

cd(a+b)−bd2)

0 0 c2qr2(c−d)
d((a+b)c−bd)2 −m

 .
The characteristic equation of V (E2) is

{λ2 + P1λ+ P2}{λ+m− c2qr2(c− d)

d((a+ b)c− bd)2
} = 0,

and the corresponding eigen values are

λ1,2 =
−P1 ±

√
P 2
1 − 4P2

2
and λ3 = −m+

c2qr2(c− d)

d((a+ b)c− bd)2
,

where

P1 = a+
b(c− d)2 + cd(c− d)

c2
, P2 =

d(c− d)(b(c− d) + ac)

c2
.

Then we have the following theorem.

Theorem 4.2. If E2(x̂, ŷ, 0) exists and md(c(a+ b)− bd)2 − c2qr2(c− d) > 0
then E2 is locally asymptotically stable in xy plane.

Proof. From lemma 4.1, if E2 exists then c > d. Then, all parameters being
positive, P1 > 0 and P2 > 0. Therefore λ1, λ2 are either negative or with
negative real part. Also, for the given condition λ3 < 0. Hence the theorem. �
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4.2. The interior equilibrium point: its existence and stability.

Lemma 4.3. The interior equilibrium point E∗(x∗, y∗, z∗) of the system (4.1)
exists if c > d and the cubic

F1(x) := aqx3 − rqx2 + (a+ b)mx− rm = 0,

has a positive real root greater than xm =
√

md
q(c−d) . Then x∗ is a positive real

root of F1(x) = 0, and y∗, z∗ are given by

y∗ =
m

qx∗
, z∗ =

1

p

(
cqx∗2

qx∗2 +m
− d

)
.

The variational matrix of the system (4.1) at E∗ is given by

V (E∗) =

a11 a12 0
a21 a22 a23
a31 a32 0

 ,
where

a11 = −a− by∗2

(x∗ + y∗)2
, a12 = − bx∗2

(x∗ + y∗)2
, a21 =

cy∗2

(x∗ + y∗)2
,

a22 = − cx∗y∗

(x∗ + y∗)2
, a23 = −py∗, a31 = qy∗z∗, a32 = qx∗z∗.

The characteristic equation of V (E∗) is

λ3 +A1λ
2 +A2λ+A3 = 0,

where

A1 = −a11 − a22,

A2 = a11a22 − a21a12 − a32a23,

A3 = (a11a32 − a12a31)a23.

Now we have the following theorem guaranteeing the local stability at E∗.

Theorem 4.4. If E∗(x∗, y∗, z∗) exists and A∗ = aq2x∗4+2aqmx∗2+(a+b)m2−
bmqx∗2 > 0, then E∗(x∗, y∗, z∗) is locally asymptotically stable.

Proof. Since all parameters are non-negative and x∗, y∗, z∗ > 0 we have,

a11, a12, a22, a23 < 0 and a21, a31, a32 > 0.

Hence

A1 = −a11 − a22 > 0,

A3 = (a11a32 − a12a31)a23 > 0 (by the given condition),

∆ = A1A2 −A3 = (a11 + a22)(a12a21 − a11a22) + a23(a22a32 + a12a31) > 0.

Then the theorem follows from the Routh-Herwitz criterion. �
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5. Dynamics in presence of time delay (τ ̸= 0)

In presence of time-delay, the system (2.1) has the same set of boundary equi-
librium points as the system (4.1). The interior equilibrium point E∗

τ (x
∗
τ , y

∗
τ , z

∗
τ )

of system (2.1) is different from E∗(x∗, y∗, z∗) of system (4.1). Here x∗τ is a
positive real root of the cubic

F2(x) := aqx3 − qrx2 +m(a+ b)eµτx−mreµτ = 0,

and

y∗τ =
meµτ

qx∗τ
, z∗τ =

1

p

(
cqx∗2τ

qx∗2τ +m
− d

)
.

Obviously, c > d and x∗τ >
√

md
q(c−d) are the conditions for existence of E∗

τ .

In the following, we study the stability behavior of E∗
τ (x

∗
τ , y

∗
τ , z

∗
τ ).

We use the transformations : x = x∗τ + x1, y = y∗τ + y1, z = z∗τ + z1.
Then the linear system is given by

du

dt
=Mu(t) +Nu(t− τ), (5.1)

where

u(t) = [x1, y1, z1]
T , M = (mij)3×3, N = (nij)3×3,

m11 = −a− by∗2τ
(x∗τ + y∗τ )

2
, m12 = − bx∗2τ

(x∗τ + y∗τ )
2
, m21 =

cy∗2τ
(x∗τ + y∗τ )

2
,

m22 = − cx∗2τ y
∗2
τ

(x∗τ + y∗τ )
2
, m23 = −py∗2τ , m33 = −m,

n31 = qy∗τz
∗
τe

−µτ , n32 = qx∗τz
∗
τe

−µτ , n33 = qx∗τy
∗2
τ e

−µτ ,

and all other mij , nij = 0.
The characteristic equation is given by

P (λ, τ) +Q(λ, τ)e−λτ = 0, (5.2)

where

P (λ, τ) = λ3 + a1(τ)λ
2 + a2(τ)λ+ a3(τ), Q(λ, τ) = b1(τ)λ

2 + b2(τ)λ+ b3(τ)

and

a1(τ) = −(m11 +m22 +m33),

a2(τ) = m11m22 +m11m33 +m22m33 −m12m21,

a3(τ) = −m11m22m33 +m12m21m33,

b1(τ) = −n33,
b2(τ) = m22n33 −m23n32 +m11n33,

b3(τ) = −m11m22n33 +m11m23n32 +m12m21n33 −m13m21n32.
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A necessary condition for a stability change of E∗
τ is that the characteristic

equation (5.2) has purely imaginary solutions. Here we notice that the coeffi-
cients in P (λ, τ) and Q(λ, τ) are delay-dependent as the equilibrium components
x∗τ are also delay-dependent. Characteristic equations with delay-independent
coefficients are comparatively simpler to deal with. The theory in such cases
is well developed [17, 23]. In our case, the main complication arises when we
proceed to investigate the existence of a purely imaginary root λ = iω of (5.2).
Here we follow the approach developed by Beretta and Kuang [6]. Let τmax be
the maximum value of τ for which E∗

τ exists. For τ ∈ [0, τmax], we assume the
following:
(i) P (0, τ) +Q(0, τ) = a3(τ) + b3(τ) ̸= 0,
(ii) P (iω, τ) +Q(iω, τ) = a3(τ) + b3(τ)− ω2(a1(τ) + b1(τ))− i{ω3 − ωb2(τ)−
ωa2(τ)} ≠ 0.
Further, we notice that

(iii) lim
|λ|→∞

∣∣∣∣Q(λ, τ)

P (λ, τ)

∣∣∣∣ = lim
|λ|→∞

{
b1(τ)λ

2 + b2(τ)λ+ b3(τ)

λ3 + a1(τ)λ2 + a2(τ)λ+ a3(τ)

}
= 0 < 1.

Now, it is easy to see that F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2 is a polynomial of
degree six. Therefore,
(iv) F (ω, τ) has a finite number of zeros.
Finally, by the implicit function theorem, we have
(v) each positive simple root ω(τ) of F (ω, τ) = 0 is continuous and differentiable
in τ , whenever it exists.

To obtain the stability criterion of E∗
τ , we set λ = iω. Substituting it in (5.2)

we have the real and imaginary parts as,

sinωτ =
b2ω(a1ω

2 − a3) + (b1ω
2 − b3)(ω

3 − a2ω)

b22ω
2 + (b3 − b1ω2)2

,

cosωτ =
b2ω(ω

3 − a2ω)− (a3 − a1ω
2)(b3 − b1ω

2)

b22ω
2 + (b3 − b1ω2)2

,

(5.3)

where we notice that b22ω
2+(b3−b1ω2)2 = |Q(iω, τ)|2 ̸= 0. (Because Q(iω, τ) = 0

would imply P (iω, τ) = 0, a contradiction to (ii) above.)
Further, (5.3) gives

F (ω, τ) := ω6 + d1ω
4 + d2ω

2 + d3 = 0, (5.4)

where d1 = a21 − 2a2 − b21, d2 = a22 − 2a1a3 + 2b1b3 − b22, d3 = a23 − b33.
This F (ω, τ) determines ω in terms of τ . For each τ , (5.4) has at most a finite

number of real roots, which ensures that there are only a finite number of ‘gates’
for the roots to cross the imaginary axis.

Let I = {τ : τ > 0 and ω(τ) is a positive root of (5.4)}. Then, if τ /∈ I, there
is no positive solution of (5.4), and consequently we have the following theorem:

Theorem 5.1. If τ /∈ I, no stability switches occur.
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Now, for any τ ∈ I, (where ω(τ) is a positive simple root of (5.4)), we can
define θ(τ) ∈ (0, 2π) as the solution of (5.2):

sin θ(τ) =
b2ω(a1ω

2 − a3) + (b1ω
2 − b3)(ω

3 − a2ω)

b22ω
2 + (b3 − b1ω2)2

=
ϕ

|Q(iω, τ)|2
,

cos θ(τ) =
b2ω(ω

3 − a2ω)− (a3 − a1ω
2)(b3 − b1ω

2)

b22ω
2 + (b3 − b1ω2)2

=
ψ

|Q(iω, τ)|2
,

(5.5)

where ϕ, ψ are continuous and differentiable functions of τ such that ϕ2 +ψ2 =
|P (iω, τ)|4 and |Q(iω, τ)|2 = |P (iω, τ)|2 for τ ∈ I. Substituting ω = ω(τ) in
(5.5), θ(τ) ∈ (0, 2π) can be determined as follows:

θ(τ) =



arctan
ϕ

ψ
if sin θ(τ) > 0, cos θ(τ) > 0;

π

2
if sin θ(τ) = 1, cos θ(τ) = 0;

π + arctan
−ϕ
ψ

if cos θ(τ) < 0;

3π

2
if sin θ(τ) = −1, cos θ(τ) = 0;

2π + arctan
ϕ

ψ
if sin θ(τ) < 0, cos θ(τ) > 0.

(5.6)

Here we notice that for τ ∈ I, θ(τ) defined above is continuous at τ . Furthermore
if θ(τ) ∈ (0, 2π), τ ∈ I, then θ(τ) is also differentiable at τ (Beretta and Kuang
2002). Now, the relation between the arguments “θ(τ)” in (5.5) and “ω(τ)τ” in
(5.3) for τ ∈ I must be

ω(τ)τ = θ(τ) + 2nπ, n ∈ N0.

Hence, we can define the maps τn : I → R+0 given by

τn(τ) :=
θ(τ) + 2nπ

ω(τ)
, n ∈ N0, τ ∈ I,

where ω(τ) is a positive simple root of F (ω, τ) = 0. Let us introduce the
functions I → R

Sn(τ) := τ − τn(τ), τ ∈ I, n ∈ N0 (5.7)

that are continuous and differentiable at τ . We notice that the values of τ
(∈ I) at which stability switches may occur, are the solutions of Sn(τ) = 0 for
some n ∈ N0 provided the corresponding transversality condition is satisfied. To
find out the transversality condition, we differentiate the characteristic equation
(5.2). Then, after some algebraic manipulations, we obtain(

dλ

dτ

)−1
∣∣∣∣∣
λ=iω

=
G+ iH

K + iL
,
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where

G = (a2 − 3ω2){b22ω2 + (b3 − b1ω
2)2}

+ (b2 + τb1ω
2 − b3τ){b2ω(ω3 − a2ω)− (a3 − a1ω

2)(b3 − b1ω
2)}

+ (2b1ω − τb2ω){b2ω(a1ω2 − a3) + (b1ω
2 − b3)(ω

3 − a2ω)},
H = 2a1ω{b22ω2 + (b3 − b1ω

2)2}
+ (2b1ω − τb2ω){b2ω(ω3 − a2ω)− (a3 − a1ω

2)(b3 − b1ω
2)}

+ (τb3 − b2 − τb1ω
2){b2ω(a1ω2 − a3) + (b1ω

2 − b3)(ω
3 − a2ω)},

K = (a′1ω
2 − a′3){b22ω2 + (b3 − b1ω

2)2}
+ (b′1ω

2 − b′3 − b2ω
2){b2ω(ω3 − a2ω)− (a3 − a1ω

2)(b3 − b1ω
2)}

+ (b3ω − b′2ω − b1ω
3){b2ω(a1ω2 − a3) + (b1ω

2 − b3)(ω
3 − a2ω)},

L = −a′2ω{b22ω2 + (b3 − b1ω
2)2}

+ (b3ω − b′2ω − b1ω
3){b2ω(ω3 − a2ω)− (a3 − a1ω

2)(b3 − b1ω
2)}

+ (b′3 + b2ω
2 − b′1ω

2){b2ω(a1ω2 − a3) + (b1ω
2 − b3)(ω

3 − a2ω)}.

(‘ ′ ’ indicates derivative with respect to τ .)
Therefore, {

Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω

}
=
GK +HL

K2 + L2
.

Let us define

sign

{
Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω

}
=: δ(τ) (say).

Then we have the following theorem:

Theorem 5.2. Let ω(τ) be a positive root of (5.4) defined for τ ∈ I, and at some
τ∗ ∈ I, Sn(τ

∗) = 0 for some n ∈ N0. Then a pair of simple conjugate pure
imaginary roots λ+(τ

∗) = iω(τ∗), λ−(τ
∗) = −iω(τ∗) of (5.2) exists at τ = τ∗

which crosses the imaginary axis from left to right if δ(τ∗) > 0 and crosses the
imaginary axis from right to left if δ(τ∗) < 0.

Now, owing to the stability criterion of the interior equilibrium in absence
of delay (given in Theorem 4.2) and the Hopf bifurcation theorem, we have the
following theorem for the existence of Hopf bifurcation near E∗

τ .

Theorem 5.3. Let A∗ > 0. Further, let ω(τ) be a positive root of (5.4) defined
for τ ∈ I, and at some τ∗ ∈ I, Sn(τ

∗) = 0 for some n ∈ N0. Then the system
(2.1) exhibits a Hopf bifurcation near E∗

τ , provided that δ(τ∗) ̸= 0. As τ increases
from zero upwards the first such Hopf bifurcation will be from stable to unstable,
the second from unstable back to stable, the third from stable to unstable and so
on.
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Figure 1. Here r = 1.1, a = 0.4, b = 0.9, c = 0.8, d = 0.9, p =
0.4, q = 0.8,m = 0.2 and µ = 0.1, τ = 0. It shows that, the
infected CD4+ T cells (y) as well as the CTLs (z) go to extinc-
tion.

6. Numerical simulations

In this section, we discuss the numerical simulations of some solutions of the
systems (2.1) and (4.1) using MATLAB. If we take the parameters of the system
(4.1) as r = 1.1, a = 0.4, b = 0.9, c = 0.8, d = 0.9, p = 0.4, q = 0.8,m = 0.2
and µ = 0.1 then d − c(= 0.1) being positive, all eigenvalues corresponding to
the equilibrium point E1 are negative and hence E1(2.75, 0, 0) is asymptotically
stable (see Fig.1). On the other hand, if we choose the parameters of system
(4.1) as r = 1.1, a = 0.4, b = 0.9, c = 1.1, d = 0.8, p = 0.4, q = 0.9 and m = 1.5,
we get the computed values of x̂ and ŷ as 1.7042 and 0.6391, respectively. We
also observe here that md(c(a+ b)− bd)2 − c2qr2(c− d) = 0.2096 > 0. So E2 is
locally asymptotically stable. Fig.2 agrees with this result.

To verify the conditions of lemma 4.2, we take the parameters as r = 4, a =
0.6, b = 5, c = 4.5, d = 2.0, p = 3.1, q = 1.5 and m = 0.9. Hence we notice that
c > d and x∗ = 5.8229 is a positive root of F1(x) = 0, which is greater than xm =
0.69. All the conditions of lemma 4.2 being satisfied, the interior equilibrium
point of system (4.1) exists and is given by E∗(5.8229, 0.1030, 0.7812). Also for
these choices of parameters, A∗ = 1382 > 0, and consequently by theorem 4.2
E∗ is locally asymptotically stable. The corresponding phase portrait is shown
in Fig.3(a). Fig.3(b) shows the stable behaviour of x, y, z with time.

In presence of delay, we have considered the same values of parameters (as
in Fig.3) except τ( ̸= 0). We observe that for τ = 0.06 < τ∗ = 0.075, E∗

τ =



572 S.P. Bera, A. Maiti and G.P. Samanta

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

Time (t)

Healthy CD4+ T Cell (x)
Infected CD4+ T Cell (y)
CTLs (z)

Figure 2. Here r = 1.1, a = 0.4, b = 0.9, c = 1.1, d = 0.8, p =
0.4, q = 0.9,m = 0.2 and µ = 0.1, τ = 0.. It shows that
the immune response(CTLs) vanishes even the infection persists
with time.

(5.8171, 0.1038, 0.7812) is stable (see Fig.4(a) and Fig.4(b)). For τ = 0.09 > τ∗,
E∗

τ is unstable and there is a periodic orbit near E∗
τ = (5.8142, 0.1041, 0.7811)

(see Fig.5(a)). The oscillations of x, y, z with time is shown in Fig.5(b).

7. Concluding remarks

In this paper we have studied a HIV infection model with immune response
cells as a specific compartment. The time-lag between a cell being infected and
corresponding immune response cell being activated, has been considered. The
assumptions made in formulation of the model has been described in details in
section 2. Positivity and boundedness, established in section 3, ensures that the
model is biologically well behaved. Throughout the discussion we have observed
that the model possesses the axial equilibrium E1 and this equilibrium is locally
asymptotically stable if and only if the death rate (killed by CTLs) of infected
helper T cells is grater than the infection conversion rate (i.e. d > c). On
the other hand, if c > d and md(c(a + b) − bd)2 − c2qr2(c − d) > 0 then
the system stabilizes to the immune response free equilibrium. It is undesirable
that the infected CD4+T cells are in positive level but CTLs goes to extinction.
Hence the parameters must be controlled in such a manner that the CTL-free
equilibrium becomes unstable.

The dynamics in absence of time-delay has been discussed in section 4. Lemma
4.2 and theorem 4.2 describe the existence and stability criterion of the system
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Figure 3. Here r = 4, a = 0.6, b = 5, c = 4.5, d = 2.0, p =
3.1, q = 1.5,m = 0.9. (a) Phase portrait of system (4.1) show-
ing that E∗ is locally asymptotically stable. (b) For x(0) =
6, y(0) = 0.5, z(0) = 0.5, it is seen that x, y, z approach to their
equilibrium values in finite time.
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Figure 4. Here r = 4, a = 0.6, b = 5, c = 4.5, d = 2.0, p =
3.1, q = 1.5,m = 0.9, µ = 0.1 and τ = 0.06. (a) Phase portrait
of system (2.1) showing that E∗

τ is locally asymptotically stable.
(b) For x(0) = 6, y(0) = 0.5, z(0) = 0.5, it is seen that x, y, z
approach to their equilibrium values in finite time.
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Figure 5. Here r = 4, a = 0.6, b = 5, c = 4.5, d = 2.0, p =
3.1, q = 1.5,m = 0.9, µ = 0.1 but τ = 0.09. (a) Phase portrait
of system (2.1) showing that E∗

τ is unstable, and there is a limit
cycle which grows out of E∗

τ . (b) Oscillations of x, y, z with time
when x(0) = 6, y(0) = 0.5, z(0) = 0.5.
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with τ = 0. Using Routh-Herwitz criterion, it has been shown that for A∗ > 0
the system with no delay approaches the co-existence equilibrium point trough
stable path in finite time. To analyze the system with delay (τ ̸= 0), we have
followed the approach developed by Beretta and Kuang [6]. It is shown that the
delay play a key role in stability of the model. There is a critical value τ∗ of
τ, so that a stable equilibrium becomes unstable as τ crosses τ∗. The analytical
findings have been verified by computer simulations.
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