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THE UNIQUENESS OF MEROMORPHIC FUNCTIONS

WHOSE DIFFERENTIAL POLYNOMIALS SHARE SOME

VALUES†

CHAO MENG∗ AND XU LI

Abstract. In this article, we deal with the uniqueness problems of mero-
morphic functions concerning differential polynomials and prove the fol-
lowing theorem. Let f and g be two nonconstant meromorphic functions,

n ≥ 12 a positive integer. If fn(f3 − 1)f ′ and gn(g3 − 1)g′ share (1, 2),
f and g share ∞ IM, then f ≡ g. The results in this paper improve
and generalize the results given by Meng (C. Meng, Uniqueness theorems
for differential polynomials concerning fixed-point, Kyungpook Math. J.

48(2008), 25-35), I. Lahiri and R. Pal (I. Lahiri and R. Pal, Nonlinear dif-
ferential polynomials sharing 1-points, Bull. Korean Math. Soc. 43(2006),
161-168), Meng (C. Meng, On unicity of meromorphic functions when two
differential polynomials share one value, Hiroshima Math.J. 39(2009), 163-

179).
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1. Introduction, definitions and results

Let f be a nonconstant meromorphic function defined in the open complex
plane C. Set E(a, f) = {z : f(z)− a = 0}, where a zero point with multiplicity
m is counted m times in the set. If these zeros points are only counted once,
then we denote the set by E(a, f). Let f and g be two nonconstant meromorphic
functions. If E(a, f) = E(a, g), then we say that f and g share the value a CM;
if E(a, f) = E(a, g), then we say that f and g share the value a IM. We assume
that the reader is familiar with the notations of Nevanlinna theory that can be
found, for instance, in [4] or [14].

Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We denote by
Em)(a, f) the set of all a-points of f with multiplicities not exceeding m, where
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an a-point is counted according to its multiplicity. Also we denote by Em)(a, f)
the set of distinct a-points of f with multiplicities not greater thanm. We denote
by Nk)(r, 1/(f − a)) the counting function for zeros of f − a with multiplicity

≤ k, and by Nk)(r, 1/(f−a)) the corresponding one for which multiplicity is not
counted. Let N(k(r, 1/(f − a)) be the counting function for zeros of f − a with

multiplicity at least k and N (k(r, 1/(f − a)) the corresponding one for which
multiplicity is not counted. Set

Nk(r,
1

f − a
) = N(r,

1

f − a
) +N (2(r,

1

f − a
) + ...+N (k(r,

1

f − a
) .

By the above definition, we have

N

(
r,

1

h

)
+N (2

(
r,

1

h

)
= N2

(
r,

1

h

)
≤ N

(
r,

1

h

)
.

Definition 1.1 ([17]). Let F and G be two nonconstant meromorphic functions
such that F andG share the value 1 IM. Let z0 be a 1-point of F with multiplicity
p, a 1-point of G with multiplicity q. We denote by NL(r,

1
F−1 ) the counting

function of those 1-points of F and G where p > q, by N
1)
E (r, 1

F−1 ) the counting

function of those 1-points of F and G where p = q = 1 and by N
(2
E (r, 1

F−1 ) the
counting function of those 1-points of F and G where p = q ≥ 2, each point in
these counting function being counted only once.

We also require the following notion of weighted sharing which was introduced
by I. Lahiri.

Definition 1.2 ([5, 6]). For a complex number a ∈ C ∪ {∞}, we denote by
Ek(a, f) the set of all a-points of f where an a-point with mutiplicity m is
counted m times if m ≤ k and k + 1 times if m > k. For a complex number
a ∈ C ∪{∞}, such that Ek(a, f) = Ek(a, g), then we say that f and g share the
value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is a
zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with
multiplicity m(≤ k) and z0 is a zero of f−a with multiplicity m(> k) if and only
if it is a zero of g− a with multiplicity n(> k), where m is not necessarily equal
to n. We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly if f , g share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively. We call f and g share (z, k) if f−z and g−z share (0, k).

It is well known that if f and g share four distinct values CM, then f is a
fractional transformation of g. In 1997, corresponding to one famous question
of Hayman, C.C. Yang and X.H. Hua showed the similar conclusions hold for
certain types of differential polynomials when they share only one value. They
proved the following result.
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Theorem 1.3 ([13]). Let f and g be two nonconstant meromorphic functions,
n ≥ 11 an integer and a ∈ C − {0}. If fnf ′ and gng′ share the value a CM,
then either f = dg for some (n + 1)th root of unity d or g(z) = c1e

cz and
f(z) = c2e

−cz, where c, c1 and c2 are constants and satisfy (c1c2)
n+1c2 = −a2.

In 2001, M.L. Fang and W. Hong obtained the following result.

Theorem 1.4 ([3]). Let f and g be two transcendental entire functions, n ≥ 11
an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM, then f ≡ g.

In 2004, W.C. Lin and H.X. Yi extended the above theorem in view of the
fixed-point. They proved the following result.

Theorem 1.5 ([8]). Let f and g be two transcendental meromorphic functions,
n ≥ 13 an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share z CM, then f ≡ g.

In 2008, the first author relaxed the nature of fixed-point to IM and proved

Theorem 1.6 ([10]). Let f and g be two transcendental meromorphic functions,
n ≥ 28 an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share z IM, then f ≡ g.

Some works have already been done in this direction [?],[9]. In 2006, I. Lahiri
and R. Pal proved the following result.

Theorem 1.7 ([7]). Let f and g be two nonconstant meromorphic functions
and let n(≥ 14) be an integer. If E3)(1, f

n(f3 − 1)f ′) = E3)(1, g
n(g3 − 1)g′),

then f ≡ g.

Naturally, we consider the following question: Can the nature of the sharing
value be relaxed in the above theorem?

In 2009, the first author gave a positive answer to the above Question and
proved

Theorem 1.8 ([11]). Let f and g be two nonconstant meromorphic functions
such that fn(f3−1)f ′ and gn(g3−1)g′ share (1, l), where n be a positive integer
such that n + 1 is not divisible by 3. If (1) l = 2 and n ≥ 14; (2) l = 1 and
n ≥ 17; (3) l = 0 and n ≥ 35, then f ≡ g.

In this paper, we study the uniqueness problems of meromorphic functions
concerning differential polynomials and prove the following results

Theorem 1.9. Let f and g be two nonconstant meromorphic functions, n ≥ 12
a positive integer. If fn(f3 − 1)f ′ and gn(g3 − 1)g′ share (1, 2), f and g share
∞ IM, then f ≡ g.

Theorem 1.10. Let f and g be two nonconstant meromorphic functions, n ≥ 19
a positive integer. If fn(f3 − 1)f ′ and gn(g3 − 1)g′ share 1 IM, f and g share
∞ IM, then f ≡ g.
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2. Some Lemmas

In this section, we present some lemmas which will be needed in the sequel.
We will denote by H the following function:

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
,

where F and G are two meromorphic functions.

Lemma 2.1 ([12]). Let f be a nonconstant meromorphic function, and let
a1, a2, ..., an be finite complex numbers, an ̸= 0. Then

T (r, anf
n + · · ·+ a2f

2 + a1f + a0) = nT (r, f) + S(r, f) .

Lemma 2.2 ([1]). If F and G share (1, 2) and (∞, k), where 0 ≤ k ≤ ∞, then
one of the following cases holds.

(1)T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G) ,

the same inequality holds for T (r,G); (2) F ≡ G; (3) FG ≡ 1. Here N∗(r,∞;F,G)
is the reduced counting function of those a-points of F whose multiplicities differ
from the multiplicities of the corresponding a-points of G.

Lemma 2.3 ([16]). Let f be a nonconstant meromorphic function. Then

N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f) .

Lemma 2.4 ([7]). Let f and g be two nonconstant meromorphic functions.
Then fn(f3 − 1)f ′gn(g3 − 1)g′ ̸≡ 1, where n is a positive integer.

Lemma 2.5 ([7]). Let F ∗ = fn+1
(

f3

n+4 − 1
n+1

)
, G∗ = gn+1

(
g3

n+4 − 1
n+1

)
,

where n(≥ 2) is an integer. If F ∗ ≡ G∗, then f ≡ g.

Lemma 2.6 ([18]). Suppose that two nonconstant meromorphic function F and
G share 1 and ∞ IM. Let H be given as above. If H ̸≡ 0, then

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+3NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G) .

Lemma 2.7 ([15]). Let H be defined as above. If H ≡ 0 and

lim sup
r→∞

N(r, 1
F ) +N(r, 1

G ) +N(r, F ) +N(r,G)

T (r)
< 1 , r ∈ I
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where I is a set with infinite linear measure and T (r) = max{T (r, F ), T (r,G)},
then FG ≡ 1 or F ≡ G.

3. Proof of Theorem 1.9

Let

F = fn(f3 − 1)f ′ , G = gn(g3 − 1)g′ , (1)

and

F ∗ = fn+1

(
f3

n+ 4
− 1

n+ 1

)
, G∗ = gn+1

(
g3

n+ 4
− 1

n+ 1

)
.

Thus we obtain that F and G share (1, 2). If the case (1) in Lemma 2.2 occur,
that is

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G) . (2)

Moreover, by Lemma 2.1, we have

T (r, F ∗) = (n+ 4)T (r, f) + S(r, f) , (3)

T (r,G∗) = (n+ 4)T (r, g) + S(r, g) . (4)

Since (F ∗)′ = F , we deduce

m

(
r,

1

F ∗

)
≤ m

(
r,

1

F

)
+ S(r, f) , (5)

and by the first fundamental theorem

T (r, F ∗) ≤ T (r, F ) +N

(
r,

1

F ∗

)
−N

(
r,

1

F

)
+ S(r, f) . (6)

Note that

N

(
r,

1

F ∗

)
= (n+ 1)N

(
r,

1

f

)
+N

(
r,

1

f3 − n+4
n+1

)
, (7)

N

(
r,

1

F

)
= nN

(
r,

1

f

)
+N

(
r,

1

f ′

)
+N

(
r,

1

f3 − 1

)
. (8)

It follows from (6)− (8) that

T (r, F ∗) ≤ T (r, F ) +N

(
r,

1

f

)
+N

(
r,

1

f3 − n+4
n+1

)
(9)

−N

(
r,

1

f ′

)
−N

(
r,

1

f3 − 1

)
+ S(r, f) .

It follows from (1) that

N2

(
r,

1

F

)
+N(r, F ) ≤ 2N

(
r,

1

f

)
+N2

(
r,

1

f ′

)
(10)
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+N2

(
r,

1

f3 − 1

)
+N(r, f) ,

N2

(
r,

1

G

)
+N(r,G) ≤ 2N

(
r,
1

g

)
+N2

(
r,

1

g′

)
(11)

+N2

(
r,

1

g3 − 1

)
+N(r, g) .

From (2), (9), (10) and (11) we obtain

T (r, F ∗) ≤ 3N

(
r,

1

f

)
+ 3N(r, f) +N

(
r,

1

f3 − n+4
n+1

)
+ 2N

(
r,
1

g

)
+N

(
r,

1

g′

)
+N

(
r,

1

g3 − 1

)
+ S(r, f) . (12)

By Lemma 2.3 we have

N

(
r,

1

g′

)
≤ N(r, g) +N

(
r,
1

g

)
≤ 2T (r, g) + S(r, g) . (13)

We have from (12) and (13) that

(n− 3)T (r, f) ≤ 8T (r, g) + S(r, g) . (14)

In the same manner as above, we have

(n− 3)T (r, g) ≤ 8T (r, f) + S(r, g) . (15)

Therefore by (14) and (15), we obtain that n ≤ 11, which contradicts n ≥ 12.
Thus by Lemma 2.2, we get F ≡ G or FG ≡ 1. If FG ≡ 1, that is

fn(f3 − 1)f ′gn(g3 − 1)g′ ≡ 1 .

By Lemma 2.4, we get a contradiction. If F ≡ G, that is

F ∗ = G∗ + c , (16)

where c is a constant. It follows that T (r, f) = T (r, g) + S(r, f). Suppose that
c ̸= 0, by the second fundamental theorem, we have

(n+ 4)T (r, g) = T (r,G∗) < N

(
r,

1

G∗

)
(17)

+N

(
r,

1

G∗ + c

)
+N(r,G∗) + S(r, g)

≤ N

(
r,
1

g

)
+N

(
r,

1

g3 − n+4
n+1

)
+N(r, g) +N(r,

1

f
)

+N

(
r,

1

f3 − n+4
n+1

)
+ S(r, f) ≤ 9T (r, f) + S(r, f) ,

which contradicts the assumption. Therefore F ∗ ≡ G∗. Thus by Lemma 2.5, we
have f ≡ g. This completes the proof of Theorem 1.9.
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4. Proof of Theorem 1.10

Let

F = fn(f3 − 1)f ′ , G = gn(g3 − 1)g′ , (18)

and

F ∗ = fn+1

(
f3

n+ 4
− 1

n+ 1

)
, G∗ = gn+1

(
g3

n+ 4
− 1

n+ 1

)
.

Thus we obtain that F and G share 1 IM. If possible, we suppose that H ̸≡ 0.
Thus, by Lemma 2.6, we have

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+3NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G) . (19)

Also we have

N
1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+2NL

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r,G) +O(1) . (20)

We get from (19) and (20) that

T (r, F ) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G) . (21)

It’s obvious that

2NL

(
r,

1

F − 1

)
≤ 2N

(
r,

F

F ′

)
≤ 2N

(
r,
F ′

F

)
+ S(r, f)

≤ 2N(r, F ) + 2N

(
r,

1

F

)
+ S(r, f) , (22)

NL

(
r,

1

G− 1

)
≤ N

(
r,

G

G′

)
≤ N

(
r,
G′

G

)
+ S(r, g)

≤ N(r,G) +N

(
r,

1

G

)
+ S(r, g) . (23)

Combining (21), (22) and (23), we deduce

T (r, F ) ≤ 6N(r, F ) +N4

(
r,

1

F

)
+N3

(
r,

1

G

)
+ S(r, f) + S(r, g) . (24)
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Moreover, by Lemma 2.1, we have

T (r, F ∗) = (n+ 4)T (r, f) + S(r, f) , (25)

T (r,G∗) = (n+ 4)T (r, g) + S(r, g) . (26)

Since (F ∗)′ = F , we deduce

m

(
r,

1

F ∗

)
≤ m

(
r,

1

F

)
+ S(r, f) , (27)

and by the first fundamental theorem

T (r, F ∗) ≤ T (r, F ) +N

(
r,

1

F ∗

)
−N

(
r,

1

F

)
+ S(r, f) . (28)

Note that

N

(
r,

1

F ∗

)
= (n+ 1)N

(
r,

1

f

)
+N

(
r,

1

f3 − n+4
n+1

)
, (29)

N

(
r,

1

F

)
= nN

(
r,

1

f

)
+N

(
r,

1

f ′

)
+N

(
r,

1

f3 − 1

)
. (30)

It follows from (24), (28), (29) and (30) that

T (r, F ∗) ≤ T (r, F ) +N

(
r,

1

f

)
+N

(
r,

1

f3 − n+4
n+1

)
(31)

−N

(
r,

1

f ′

)
−N

(
r,

1

f3 − 1

)
+ S(r, f) + S(r, g) .

We have from (25) and (31) that

(n− 10)T (r, f) ≤ 8T (r, g) + S(r, g) . (32)

In the same manner as above, we have

(n− 10)T (r, g) ≤ 8T (r, f) + S(r, g) . (33)

Therefore by (32) and (33), we obtain that n ≤ 18, which contradicts n ≥ 19.
Therefore H ≡ 0. That is

F ′′

F ′ − 2
F ′

F − 1
≡ G′′

G′ − 2
G′

G− 1
. (34)

By integration, we have from (34)

1

G− 1
=

A

F − 1
+B , (35)

where A(̸= 0) and B are constants. Thus

T (r, F ) = T (r,G) + S(r, f) . (36)

From (18), we have

N

(
r,

1

F

)
+N

(
r,

1

G

)
+N(r, F ) +N(r,G) (37)
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≤ N

(
r,

1

f

)
+N

(
r,

1

f3 − 1

)
+N

(
r,

1

f ′

)
+N(r, f)

+N

(
r,
1

g

)
+N

(
r,

1

g3 − 1

)
+N

(
r,

1

g′

)
+N(r, g).

Note that

N

(
r,

1

f ′

)
≤ T (r, f ′)−m

(
r,

1

f ′

)
(38)

≤ 2T (r, f)−m

(
r,

1

f ′

)
+ S(r, f) ,

and

T (r, F ) +m

(
r,

1

f ′

)
= T

(
r, fn(f3 − 1)f ′)+m

(
r,

1

f ′

)
(39)

≥ T (r, fn(f3 − 1)) .

From (37)− (39), we apply Lemma 2.7 and get F ≡ G or FG ≡ 1. Proceeding
as in the proof of Theorem 1.9, we get the conclusion. This completes the proof
of Theorem 1.10.
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