Acknowledgement
Supported by : UET
References
- Abdoun, F., Azrar, L., Daya, E.M. and Potier-Ferry, M. (2009), "Forced harmonic response of viscoelastic structures by an asymptotic numerical method", Comput. Struct., 87(1), 91-100. https://doi.org/10.1016/j.compstruc.2008.08.006
- Adhikari, S. (2004), "Optimal complex modes and an index of damping non-proportionality", Mech. Syst. Signal Pr., 18(1), 1-27. https://doi.org/10.1016/S0888-3270(03)00048-7
- Barkanov, E.N. (1993), "Method of complex eigenvalues for studying the damping properties of sandwichtype structures", Mech. Comput. Mater., 29(1), 90-94. https://doi.org/10.1007/BF00656275
- Barkanov, E.N. (1994), "Natural vibrations of a system with hysteretic and viscous damping", Mech. Comput. Mater., 29(6), 613-616. https://doi.org/10.1007/BF00616328
- Bhimaraddi, A. (1995), "Sandwich beam theory and the analysis of constrained layer damping", J. Sound Vib., 179(4), 591-602. https://doi.org/10.1006/jsvi.1995.0039
- Bilasse, M., Daya, E.M. and Azrar, L. (2010), "Linear and nonlinear vibrations analysis of viscoelastic sandwich beams", J. Sound Vib., 329(23), 4950-4969. https://doi.org/10.1016/j.jsv.2010.06.012
- Daya, E.M. and Potier-Ferry, M. (2001), "A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures", Comput. Struct., 79(5), 533-541. https://doi.org/10.1016/S0045-7949(00)00151-6
- Fasana, A. and Marchesiello, S. (2001), "Rayleigh-Ritz analysis of sandwich beams", J. Sound Vib., 241(4), 643-652. https://doi.org/10.1006/jsvi.2000.3311
- Hu, H., Belouettar, S., Potier-Ferry, M. and Daya, E.M. (2008), "Review and assessment of various theories for modeling sandwich composites", Comput. Struct., 84(3), 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007
- Imaino, W. and Harrison, J.C. (1991), "A comment on constrained layer damping structures with low viscoelastic modulus", J. Sound Vib., 149(2), 354-359. https://doi.org/10.1016/0022-460X(91)90646-2
- Johnson, C.D. and Kienholz, D.A. (1982), "Finite element prediction of damping in structures with constrained viscoelastic layers", AIAA J., 20(9), 1284-1290. https://doi.org/10.2514/3.51190
- Koruk, H. and Sanliturk, K.Y. (2011), "Assessment of the complex eigenvalue and the modal strain energy methods for damping predictions", International Congress on Sound and Vibration, Rio de Janeiro, Brazil, July.
- Koruk, H. and Sanliturk, K.Y. (2012), "Assessment of modal strain energy method: advantages and limitations", ASME 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, July.
- Koruk, H. and Sanliturk, K.Y. (2013), "A novel definition for quantification of mode shape complexity", J. Sound Vib., 332(14), 3390-3403. https://doi.org/10.1016/j.jsv.2013.01.039
- Koruk, H. and Sanliturk, K.Y. (2014), "Optimization of damping treatments based on big bang-big crunch and modal strain energy methods", J. Sound Vib., 333(5), 1319-1330. https://doi.org/10.1016/j.jsv.2013.10.023
- Kosmatka, J.B. and Liguore, S.L. (1993), "Review of methods for analyzing constrained-layer damped structures", J. Aerosp. Eng., 6(3), 268-283. https://doi.org/10.1061/(ASCE)0893-1321(1993)6:3(268)
- Krenk, S. (2004), "Complex modes and frequencies in damped structural vibrations", J. Sound Vib., 270(4), 981-996. https://doi.org/10.1016/S0022-460X(03)00768-5
- Lampoh, K., Charpentier, I. and El Mostafa, D. (2014), "Eigenmode sensitivity of damped sandwich structures", Comptes Rendus Mecanique, 342(12), 700-705. https://doi.org/10.1016/j.crme.2014.08.001
- Lee, D.H. (2008), "Optimal placement of constrained-layer damping for reduction of interior noise", AIAA J., 46(1), 75-83. https://doi.org/10.2514/1.30648
- Mead, D.J. and Markus, S. (1969), "The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions", J. Sound Vib., 10(2), 163-175. https://doi.org/10.1016/0022-460X(69)90193-X
- Prater, Jr, G. and Singh, R. (1990), "Eigenproblem formulation, solution and interpretation for nonproportionally damped continuous beams", J. Sound Vib., 143(1), 125-142. https://doi.org/10.1016/0022-460X(90)90572-H
- Rao, Y.V.K.S. and Nakra, B.C. (1973), "Theory of vibratory bending of unsymmetrical sandwich plates", Arch. Mech., 25, 213-225.
- Rao, M.D. (2003), "Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes", J. Sound Vib., 262(3), 457-474. https://doi.org/10.1016/S0022-460X(03)00106-8
- Reddy, J.N. (2005), An Introduction to the Finite Element method, 3rd Edition, McGraw-Hill, New York, NY, USA.
- Rikards, R.B. and Barkanov, E.N. (1992), "Determination of the dynamic characteristics of vibrationabsorbing coatings by the finite-element method", Mech. Compos. Mater., 27(5), 529-535. https://doi.org/10.1007/BF00613477
- Rikards, R. (1993), "Finite element analysis of vibration and damping of laminated composites", Comput. Struct., 24(3), 193-204. https://doi.org/10.1016/0263-8223(93)90213-A
- Sanliturk, K.Y. and Koruk, H. (2013), "Development and validation of a composite finite element with damping capability", Comput. Struct., 97, 136-146. https://doi.org/10.1016/j.compstruct.2012.10.020
- Sainsbury, M.G. and Zhang, Q.J. (1999), "The Galerkin element method applied to the vibration of damped sandwich beams", Comput. Struct., 71(3), 239-256. https://doi.org/10.1016/S0045-7949(98)00242-9
- Singhvi, S. and Kapania, R.K. (1994), "Comparison of simple and Chebychev polynomials in Rayleigh-Ritz analysis", J. Eng. Mech., 120(10), 2126-2135. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:10(2126)
- Soni, M.L. (1981), "Finite element analysis of viscoelastically damped sandwich structures", Shock Vib. Bull., 55(1), 97-109.
- Sun, C.T. and Lu, Y.P. (1995), Vibration Damping of Structural Elements, Prentice Hall Inc., New Jersey, NJ, USA.