References
- Arslan, M.E. and Durmus, A. (2014), "Fuzzy logic approach for estimating bond behavior of lightweight concrete", Comput. Concrete, 14(3), 233-245. https://doi.org/10.12989/cac.2014.14.3.233
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall Publisher, NJ, USA.
- Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249
- Dorum, A., Yarar, A., Sevimli M.F. and Onucyildiz, M. (2010), "Modelling the rainfall-runoff data of susurluk basin", Exp. Syst. Appl., 37(9), 6587-6593. https://doi.org/10.1016/j.eswa.2010.02.127
- Drake, J.T. (2000), "Communications phase synchronization using the adaptive network fuzzy inference system", Ph.D. Thesis, New Mexico State University, Las Cruces, New Mexico, USA.
- El-Mezaini, N., Balkaya, C. and Citipioglu, E. (1991), "Analysis of frames with nonprismatic members", J. Struct. Eng., ASCE, 117(6), 1573-1592. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1573)
- Hakim, S.J.S. and Abdul Razak, H. (2013), "Adaptive Neuro fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. https://doi.org/10.12989/sem.2013.45.6.779
- Ham, F.M., Kostanic, I. (2001), Principles of Neurocomputing for Science and Engineering, McGraw Hill, New York, NY, USA.
- Jang, J.S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE Tran. Syst. Manag. Cyber, 23(3), 665-685. https://doi.org/10.1109/21.256541
- Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice-Hall, Upper Saddle River.
- Kisi, O. (2006), "Daily pan evaporation modelling using a neuro-fuzzy computing technique", J. Hydrol., 329, 636-646. https://doi.org/10.1016/j.jhydrol.2006.03.015
- Kose, M.M. and Kayadelen, C. (2013), "Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy", Struct. Eng. Mech., 47(3), 401-419. https://doi.org/10.12989/sem.2013.47.3.401
- Markandeya, R.P., Rajsekhar, K. and Sandeep, R.T. (2014), "Performance of non-prismatic simply supported prestressed concrete beams", Struct. Eng. Mech., 52(4), 723-738. https://doi.org/10.12989/sem.2014.52.4.723
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M., Jameel., M., Hakim, S.J.S. and Zargar, M. (2013), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., 45(3), 319-332.
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Sariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 15(4), 785-809.
- Moller, M.B. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
- Saffari, H., Mohammadnejad, M. and Bagheripour, M.H. (2012), "Free vibration analysis of non-prismatic beams under variable axial forces", Struct. Eng. Mech., 43(5), 561-582. https://doi.org/10.12989/sem.2012.43.5.561
- Yarar, A., Onucyildiz, M. and Copty, N.K. (2009), "Modelling Level Change In Lakes Using Neuro-Fuzzy And Artificial Neural Networks", J. Hydrol., 365(3), 329-334. https://doi.org/10.1016/j.jhydrol.2008.12.006
- Yuksel, S.B. (2009), "Behavior of symmetrically haunched non-prismatic members subjected to temperature changes", Struct. Eng. Mech., 31(3), 203-207.
- Yuksel, S.B. (2011), "Discussion of the paper 'Equivalent representations of beams with periodically variable cross-sections' by Tianxin Zheng and Tianjian Ji", Eng. Struct., 33(10), 2953-2955. https://doi.org/10.1016/j.engstruct.2011.06.010
- Yuksel, S.B. (2012), "Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5", Struct. Eng. Mech., 32(6), 849-866.
- Yuksel, S.B. and Yarar, A. (2014a), "Artificial Neural Network (ANN) modelling of the parabolic haunched beams subjected to uniform temperature change", 15th EU/ME Workshop: Metaheuristics and Engineering, Istanbul, Turkey, March.
- Yuksel, S.B. and Yarar, A. (2014b), "Modelling uniform temperature effects of symmetric parabolic haunched beams using Adaptive Neuro Fuzzy Inference Systems (ANFIS)", 15th EU/ME Workshop: Metaheuristics and Engineering, Istanbul, Turkey, March.
- Yuksel, S.B. and Yarar, A. (2014c), "Modeling uniform temperature effects of symmetric parabolic haunched beams using Neuro-Fuzzy and Artificial Neural Networks", ICESA 2014 International Civil Engineering & Architecture Symposium for Academicians 2014, Side, Antalya, Turkey, May.
- Zheng, T. and Ji, T. (2011), "Equivalent representations of beams with periodically variable cross-section", Eng. Struct., 39(14), 1569-1583.
Cited by
- Micro-seismic monitoring in mines based on cross wavelet transform vol.11, pp.6, 2016, https://doi.org/10.12989/eas.2016.11.6.1143
- Intelligent fuzzy inference system approach for modeling of debonding strength in FRP retrofitted masonry elements vol.61, pp.2, 2015, https://doi.org/10.12989/sem.2017.61.2.283
- Finite element and design code assessment of reinforced concrete haunched beams vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.423
- Damage effect on experimental modal parameters of haunch strengthened concrete-encased composite column-beam connections vol.29, pp.2, 2015, https://doi.org/10.1177/1056789519843330