Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2015), "wave propagation in fibre-reinforced anisotropic thermo-elastic medium subjected to gravity field", Struct. Eng. Mech., 53(2), 277-296. https://doi.org/10.12989/sem.2015.53.2.277
- Benaroya, H. and Rehak, M. (1988), "Finite element methods in probabilistic structural analysis: A selective review", Appl. Mech. Rev., 41, 201-213. https://doi.org/10.1115/1.3151892
- Countreras, H. (1980), "The stochastic finite element method", Comput. Struct., 12, 341-348. https://doi.org/10.1016/0045-7949(80)90031-0
- Elishakoff, I., Ren, Y.J. and Shinozuka, M. (1997), "New formulation of FEM for deterministic and stochastic beams through generalization of Fuchs' approach", Comput. Meth. Appl. Mech. Eng., 144, 235-243. https://doi.org/10.1016/S0045-7825(96)01173-5
- Ghanem, R.G. and Spanos, P.D. (1991), Stochastic finite elements: a spectral approach, Springer -verlag, New York, USA
- Gibson, L.J. and Ashby, M.F. (1997), Cellular solids: Structure and properties, Cambridge University Press, Cambridge, UK.
- Guo, Y.B., Shim, V.P.W. and Yeo, A.Y.L. (2010), "Elastic wave and energy propagation in angled beams", Acta Mech., 214, 79-94. https://doi.org/10.1007/s00707-010-0317-6
- Gupta, S. and Manohar, C.S. (2002), "Dynamic stiffness method for circular stochastic Timoshenko beams: response variability and reliability analysis", J. Sound Vib., 253, 1051-1085. https://doi.org/10.1006/jsvi.2001.4082
- Hosseini, S.A.A. and Khadem, S.E. (2005), "Free vibration analysis of rotating beams with random properties", Struct. Eng. Mech., 20, 293-312. https://doi.org/10.12989/sem.2005.20.3.293
- Hosseini, S.A.A. and Khadem, S.E. (2007), "Vibration and reliability of a rotating beam with random properties under random excitation", Int. J. Mech. Sci., 49, 1377-1388. https://doi.org/10.1016/j.ijmecsci.2007.04.008
- Hosseini, S.M. and Shahabian, F. (2014), "Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method", Struct. Eng. Mech., 49(1), 41-64. https://doi.org/10.12989/sem.2014.49.1.041
- Hughes, T.J.R. (1987), The finite element method, Prentice-Hall, N.J.
- Ishida, R. (2001), "Stochastic finite element analysis of beam with stochastical uncertainties", AIAA J., 39, 2192-2197. https://doi.org/10.2514/2.1218
- Lee, J.P. and Kolsky, H. (1972), "The generation of stress pulses at the junction of two noncollinear rods", ASME J. Appl. Mech., 39, 809-813. https://doi.org/10.1115/1.3422793
- Liu, M. and Gorman, D.G. (1995), "Formulation of Rayleigh damping and its extension", Comput. Struct., 57, 277-285. https://doi.org/10.1016/0045-7949(94)00611-6
- Nouy, A. and Clement, A. (2010), "Extended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces", Int. J. Numer. Meth. Eng., 83, 1312-1344. https://doi.org/10.1002/nme.2865
- Papadopoulos, V., Papadrakakis, M. and Dodatis, G. (2006), "Analysis of mean and mean square response of general linear stochastic finite element systems", Comput. Meth. Appl. Mech. Eng., 195, 5454-5471. https://doi.org/10.1016/j.cma.2005.11.008
- Sankaran, M. and Achintya, H. (1991), "Reliability-based optimization using SFEM", Lec. Note. Eng., 61, 241-250. https://doi.org/10.1007/978-3-642-84362-4_21
- Simha, K.R.Y. and Fourney, W.L. (1984), "Investigation of stress wave propagation through intersection bars", ASME J. Appl. Mech., 51, 345-353. https://doi.org/10.1115/1.3167624
- Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1985), "Neumann expansion for stochastic finite element analysis", ASCE J. Eng. Mech., 114, 1335-1354.
- Young, K.H. and Atkins, K.J. (1983), "Generation of elastic stress waves at a T-junction of square rods", J. Sound Vib., 88, 431-436. https://doi.org/10.1016/0022-460X(83)90646-6
- Zhong, W.X., Zhu, J.N. and Zhong, X.X. (1996), "On a new time integration method for solving time dependent partial differential equations", Comput. Meth. Appl. Mech. Eng., 130, 163-178. https://doi.org/10.1016/0045-7825(95)00876-4
- Zhong, W.X., Zhu, J.P. and Zhong, X.X. (1994), "A precise time integration algorithm for non-linear systems", Proc. 3rd World Congress on Computational Mechanics, Chiba, Japan.
Cited by
- Wave-passage effect on the seismic response of suspension bridges considering local soil conditions vol.17, pp.2, 2015, https://doi.org/10.1007/s13296-017-6010-z
- Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions vol.70, pp.2, 2015, https://doi.org/10.12989/sem.2019.70.2.143