DOI QR코드

DOI QR Code

민감도 분석을 통한 유사이송용량 산정식의 적용성 평가

Evaluating Applicability of Sediment Transport Capacity Equations through Sensitivity Analysis

  • Her, Younggu (Blackland Research Center, Texas A&M University) ;
  • Hwang, Syewoon (Dept. of Agricultural eng., (Institute of Agriculture and Life Science), Gyeongsang Nat. Univ.)
  • 투고 : 2015.08.04
  • 심사 : 2015.11.02
  • 발행 : 2015.11.30

초록

유사는 오염물질을 저장 또는 운반하는 매개체로 하류 수체의 물리적, 화학적, 생물학적 과정에 큰 영향을 미친다. 따라서 유사 발생 및 운송 양의 추정은 수질개선을 위한 유역관리계획을 수립하는데 중요한 자료가 된다. 이러한 유사량 및 운송과정은 주로 모형에 의해 계산되고 모의되는데, 많은 유사운송모형들이 유사이송용량 (sediment transport capacity)식을 이용하여 유사 발생량, 이송량 및 퇴적량을 산정한다. 유출에 의한 유사이송용량을 산정하기 위한 기존의 식들은 각기 다른 목적과 환경에서 개발되어 보편적으로 적용할 수 있는 식은 전무한 실정이다. 이에 본 연구는 유사이송용량을 계산하기 위해 사용되는 식들의 개발 목적과 환경을 검토하고, 경사, 유량, 유사입경 및 토성에 따른 민감도를 조사하여 각 식의 적용성을 평가하였다. 본 연구에서 적용한 8개의 유사이송용량 산정식은 모두 경사도에 가장 민감하게 변화하는 것으로 나타났다. Abraham과 Yalin식 이외의 산정식을 이용하여 계산된 유사이송용량은 경사도가 0.1 % 보다 작을 때는 0 mg/l, 경사도가 100 % 보다 클 때는 이론최대치인 2,650 mg/l 을 넘는 것으로 나타나, 이들 산정식의 적용 가능한 경사도 범위를 0.1 %-100 %로 추정할 수 있었다. Abrahams식은 유량에, Bagnold식은 유사입경 및 토성에 민감한 것으로 나타났다. Low, Rickenmann, 및 Schoklitsch식은 유량에 민감하게 반응하지 않았고, Low와 Schoklitsch식은 토성에도 민감하지 않은 것으로 나타나, 이들 식의 제한된 적용성을 확인하였다. 한편, Yang식은 계산식에 포함된 로그항으로 인해 그 적용범위가 제한되는 경우가 있었다. Abrahams과 Yalin식을 이용하여 산정된 유사운송용량은 모든 인자들에 민감하게 반응하는 것으로 나타났으며, Yalin과 Low식의 경우, silt와 clay에 적용되었을 때 유량이 클수록 유사운송용량이 다소 작아지는 경향을 보임에 따라, 전체적으로 Abraham식의 적용성이 가장 높은 것으로 평가되었다. 본 연구결과는 향후 모형을 이용한 유사량 모의 시 적용대상 지역의 특성에 가장 적합한 유사운송용량 산정식을 선정하는데 유용한 정보를 제공할 것으로 기대된다.

키워드

참고문헌

  1. Abrahams, A., G. Li, C. Krishnan, and J. F. Atkinson, 2001. A sediment transport equation for interrill overland flow on rough surfaces. Earth Surface Processes and Landforms 26: 1443-1459. https://doi.org/10.1002/esp.286
  2. Alonso, C. V., W. H. Neibling, and G. R. Foster, 1981. Estimating sediment transport capacity in watershed modelling. Transaction of ASABE 24: 1211-1220. https://doi.org/10.13031/2013.34422
  3. ASCE, 2006. Sedimentation Engineering. ASCE Manuals and Reports on Engineering Practice No. 54. Reston, V.A.: ASCE.
  4. Bagnold, R. A. 1966. An approach to the sediment transport problem from general physics. The Physics of Sediment Transport by Wind and Water: A Collection of Hallmark Papers by RA Bagnold, 231-291.
  5. Bagnold, R. A., 1980. An empirical correlation of bedload transport rates in flume and natural rivers. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 372(1751): 453-473. https://doi.org/10.1098/rspa.1980.0122
  6. Beasley, D. B., and L. F. Huggins, 1981. ANSWERS user's manual. Report No. EPA-905/9-82-001.
  7. DiToro, D. M., 2001. Sediment Flux Modeling. New York, N.Y.: John Wiley & Sons.
  8. Dunne, T., and L. B. Leopold, 2002. Water in Environmental Planning. 2nd ed. San Francisco, C.A.: W. H. Freeman Company.
  9. EPA, 2003. Developing water quality criteria for suspended and bedded sediments (SABS), Potential Approaches. Washington D.C.: EPA.
  10. EPA, 2007. National Water Quality Inventory: Report to Congress, 2002 Reporting Cycle. Washington D.C.: EPA.
  11. Fooladmand, H. R., and A. R. Sepaskhah, 2006. Improved estimation of the soil particle-size distribution from textural data. Biosystems Engineering 94(1): 133-138. https://doi.org/10.1016/j.biosystemseng.2006.02.009
  12. Foster, G. R., D. C. Flanagan, M. A. Nearing, L. J. Lane, L. M. Risse, and S. C. Finkner, 1995. Hillslope erosion component. In USDA-Water Erosion Prediction Project (WEPP), Technical Documentation. West Lafayette, IN.: USDA-ARS-MWA.
  13. Foster, G. R., and L. D. Meyer, 1972. A closed-form erosion equation for upland areas. In H. W. Shen (ed) Sedimentation: Symposium to honor Prof. H. A. Einstein. Colorado State University, Ft. Collins. C.O.: 12.1-12.19.
  14. Frinkner, S. C., M. A. Nearing, G. R. Foster, and J. E. Gilley, 1989. A simplified equation for modeling sediment transport capacity. Transactions of ASABE 32(5): 1545-1550. https://doi.org/10.13031/2013.31187
  15. Govers, G., 1990. Empirical relationships for the transport capacity of overland flow. Erosion, Transport and Deposition Processes. Jerusalem, IAHS Publication 189: 45-63.
  16. Govers, G., 1992. Evaluation of transporting capacity formulae for overland flow. Chapter 11. In: Parsons, A.J., Abrahams, A.D. (Eds.), Overland Flow Hydraulics and Erosion Mechanics. UCL Press, London, pp. 243-273.
  17. Guy, B. T., W. T. Dickinson, and R. P. Rudra, 1992. Evaluation of fluvial sediment transport equations for overland flow. Transactions of ASABE 35(2): 545-555. https://doi.org/10.13031/2013.28632
  18. Haan, C. T., B. J. Barfield, and J. C. Hayes, 1994. Design hydrology and sedimentology for small catchments. Elsevier.
  19. Her, Y. G., M. S. Kang, and S. W. Park, 2006. Estimating USLE soil erosion through GIS-based decision support system. Journal of the Korean Society of Agricultural Engineers 48(7): 29-40. https://doi.org/10.5389/KSAE.2006.48.5.029
  20. Her, Y., 2011. HYSTAR: Hydrology and Sediment Transport Simulation using Time-Area Method. PhD Dissertation, Virginia Polytechnic Institute and State University.
  21. Hessel, R., and V. Jetten, 2007. Suitability of transport equations in modelling soil erosion for a small Loess Plateau catchment. Engineering Geology 91: 56-71. https://doi.org/10.1016/j.enggeo.2006.12.013
  22. Jetten, V., 2002. LISEM (Limburg Soil Erosion Model) User Manual, ver. 2.x. Utrecht Center for Environment and Landscape Dynamics, Netherlands.: Utrecht University.
  23. Julien, P. Y., 1995. Erosion and Sedimentation. Cambridge, UK: Cambridge University Press.
  24. Kang, M., S. Park, S. Im, and H, Kim, 2003. Computing the half-month rainfall-runoff erosivity factor for RUSLE. Journal of the Korean Society of Agricultural Engineers 45(3): 29-40.
  25. Lee, E. J., Y. K. Cho, S. W. Park, and H. K. Kim, 2006. Estimating soil losses from Saemangeum watershed based on cropping systems. Journal of the Korean Society of Agricultural Engineers 48(6): 29-40. https://doi.org/10.5389/KSAE.2006.48.5.029
  26. Low, H. S., 1989. Effect of sediment density on bed-load transport. Journal of Hydraulic Engineering 115: 124-138. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:1(124)
  27. Meyer, L. D. and W. H. Wschmeier, 1969. Mathematical simulation of the process of soil erosion by water. Transactions of the ASABE 12, 572-580.
  28. Misra, R. K., and C. W. Rose, 1996. Application and sensitivity analysis of process-based erosion model GUEST. European Journal of Soil Science 47(4), 593-604. https://doi.org/10.1111/j.1365-2389.1996.tb01858.x
  29. Morgan, R. P. C., J. N. Quinton, R. E. Smith, J. W. Poesen, K. Auerswald, G. Chisci, D. Torri, and M. E. Styczen, 1998a. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport form fields and small catchments. Earth Surf. Process. Landforms 23: 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  30. Morris, G. L., and J. Fan, 1998. Reservoir Sedimentation Handbook. New York, N.Y.: McGraw-Hill.
  31. Nearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finker, 1989. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASABE 32(5): 1587-1593. https://doi.org/10.13031/2013.31195
  32. Rickenmann, D., 1991. Hyperconcentrated flow and sediment transport at steep slopes. Journal of Hydraulic Engineering 117(11): 1419-1439. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:11(1419)
  33. Schoklitsch, A., 1962. Handbuch des Wasserbaues (Third Edition). Springer-Verlag, Vienna, Austria.
  34. Skaggs, T. H., L. M. Arya, P. J. Shouse, and B. P. Mohanty, 2001. Estimating particle-size distribution from limited soil texture data. Soil Science Society of American Journal 65(4): 1038-1044. https://doi.org/10.2136/sssaj2001.6541038x
  35. Silburn, D. M., and R. J. Loch, 1989. Evaluation of the CREAMS model. I. Sensitivity analysis of the soil erosion/ sedimentation component for aggregated clay soils. Australian Journal of Soil Research 27: 545-561. https://doi.org/10.1071/SR9890545
  36. Song, C. S., and S. Y. Lim, 2014. Prediction of sediment according to type of rural canal. Journal of the Korean Society of Agricultural Engineers 56(6): 121-128. https://doi.org/10.5389/KSAE.2014.56.6.121
  37. Stewart, B. A., D. A. Woolhiser, W. H. Wischmeier, J. H. Caro, and M. H. Freere, 1975. Control of water pollution from cropland. Vol. 1, Report EPA-600. US Environmental Protection Agency, Washington DC, USA.
  38. USDA, 1987. Soil Mechanics Level 1: Module 3 - USDA Textural Soil Classification - Study Guide (revised February 1987). Soil Conservation Service, United States Department of Agriculture.
  39. US Department of the Interior, 2006. Erosion and Sedimentation Manual. Denver, C.O.: U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center.
  40. Wilber, D. H., and D. G. Clarke, 2001. Biological effects of suspended sediments: A review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. North American Journal of Fisheries Management 21: 855-875. https://doi.org/10.1577/1548-8675(2001)021<0855:BEOSSA>2.0.CO;2
  41. Woolhiser, D. A., R. E. Smith, and D. C. Goodrich, 1990. KINEROS, A kinematic runoff and erosion model: Documentation and user manual. U.S. Department of Agriculture: Agricultural Research Service.
  42. Yalin, M. S., 1963. An expression for bed-load transportation. Journal of Hydraulic Division, Proceeding of the American Society of Civil Engineers 89(3): 221-250.
  43. Yang, C. T., 1973. Incipient motion and sediment transport. Journal of the Hydraulics Division 99(10): 1679-1704.
  44. Yang, C. T. and J. B. Stall, 1974. Unit stream power for sediment transport in alluvial rivers. REs. Rep. 88, Water Resources Center, University of Illinois, Urbana, Illinois, pp. 38.
  45. Young, R. A., C. A. Onstad, D. D. Bosch, and W. P. Anderson, 1989. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation 46(2): 168-173.