DOI QR코드

DOI QR Code

Speech Recognition of the Korean Vowel 'ㅐ', Based on Time Domain Sequence Patterns

시간 영역 시퀀스 패턴에 기반한 한국어 모음 'ㅐ'의 음성 인식

  • Received : 2015.07.29
  • Accepted : 2015.08.31
  • Published : 2015.11.15

Abstract

As computing and network technologies are further developed, communication equipment continues to become smaller, and as a result, mobility is now a predominant feature of current technology. Therefore, demand for speech recognition systems in mobile environments is rapidly increasing. This paper proposes a novel method to recognize the Korean vowel 'ㅐ' as a part of a phoneme-based Korean speech recognition system. The proposed method works by analyzing a sequence of patterns in the time domain instead of the frequency domain, and consequently, its use can markedly reduce computational costs. Three algorithms are presented to detect typical sequence patterns of 'ㅐ', and these are combined to produce the final decision. The results of the experiment show that the proposed method has an accuracy of 89.1% in recognizing the vowel 'ㅐ'.

컴퓨팅 기술과 네트워크의 발달로 인해, 정보 기기가 소형화되고 이동성이 강조되고 있다. 이에 따라 모바일 환경에서 작동 가능한 음성 인식 시스템에 대한 수요가 최근 급격히 증대되고 있다. 본 논문은 음소 기반 한국어 음성 인식 시스템의 일부로서, 한국어 모음 'ㅐ'에 대한 새로운 인식 방식을 제안한다. 제안하는 방식은 주파수 영역에서의 분석을 배제하고, 시간 영역에서의 시퀀스 패턴에 기반하여 인식을 수행함으로써, 계산 비용을 현저히 절감할 수 있다. 'ㅐ'의 전형적인 시퀀스 패턴들을 탐지하기 위한 세 가지 알고리즘이 제시되며, 이를 결합하여 최종 판별을 수행한다. 실험 결과를 통해, 제안하는 방식이 89.1%의 정확도로 모음 'ㅐ'를 인식할 수 있음을 확인하였다.

Keywords

Acknowledgement

Supported by : 성신여자대학교

References

  1. KOCCA, Culture Technology(CT) in-depth Report, Nov. 2011.
  2. Y. Y. Seo, J. D. Song, J. H. Lee, "Phoneme Segmentation in Consideration of Speech feature in Korean Speech Recognition," Journal of Korean Society for Internet Information, Vol. 2, No. 1, pp. 31-38, 2001. (in Korean)
  3. M. Y. Nam, J. J. Lee, J. H. Park, S. Y. No, "Recognition of Korean Fricatives and Affricates Using Modified Teager Energy Measurement Method," Proc. of the IEEK Conference 1993, Vol. 15, No. 1, pp. 23-26, 1993. (in Korean)
  4. M. J. Kim and C. H. Kweon, "An Automatic Segmentation System Based on HMM and Correction Algorithm," Speech Sciences, Vol. 9, No. 4, pp. 265-274, 2002. (in Korean)
  5. G. Hinton, L. Deng, D. Yu, G. E. Dahl, "Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups," Signal Processing Magazine, IEEE, Vol. 29, No. 6, pp. 82-97, 2012.
  6. Y. K. Lee, "Speech Interface Technology and Service Trend under the Smart Phone Environment," Information & Communications Magazine, Vol. 29, No. 4, pp. 3-9, 2012. (in Korean)
  7. F. Brugnara et al., "Automatic segmentation and labeling of speech based on hidden Markov model," Speech Communication, Vol. 12, pp. 357-370, 1993. https://doi.org/10.1016/0167-6393(93)90083-W
  8. J. ZhNF, H. Yu, N. Ma, Z. Li, "The Phoneme Automatic Segmentation Algorithms Study of Tibetan Lhasa Words Continuous Speech Stream," Proc. of the 2nd International Conference On Systems Engineering and Modeling, pp. 578-581, 2013.
  9. G. Kiss, D. Sztaho, K. Vicsi, "Language independent automatic speech segmentation into phoneme-like units on the base of acoustic distinctive features," 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), pp. 579-582, 2013.
  10. R. A. Brietion, B. M. G. Cheetham, M. C. Hall, "A comparison of distance measures for speech segmentation in variable frame rate speech vocoding," Proc. of the IEEE Colloquium, pp. 6/1-6/5, 1990.
  11. F. Itakura and S. Saito, "A statistical method for estimation of speech spectral density and formant frequencies," Electronics and Communications in Japan, Vol. 53A, pp. 36-43, 1970.
  12. H. Jung, Korean Speech Recognition Using Neural Networks, Korean Institute of Information Scientists and Engineers, pp. 63-82, 1993.
  13. J. H. Lee, J. W. Lee, and J. Lee, "Korean Phonemes 'ㅅ', 'ㅈ', 'ㅊ' Recognition based on Sign Distribution Volatility," Communications of the Korean Institute of Information Scientists and Engineers, Vol. 19, pp. 377-382, 2013. (in Korean)
  14. J. W. Lee, "Speech Recognition of Korean Phonemes 'ㅅ', 'ㅈ', 'ㅊ' based on Volatility and Turning Points," KIISE Transactions on Computing Practices, Vol. 20, No. 11, pp. 579-585, 2014. (in Korean) https://doi.org/10.5626/KTCP.2014.20.11.579
  15. S. K. Choi, J. W. Lee, and J. Lee, "Korean Vowel 'ㅏ' Recognition based on Wave Sequence Detection," Proc. of the Digital Contents Society Joint Conference 2013, Vol. 14, pp. 577-579, 2013. (in Korean)
  16. W. Roh and J. Lee, "Implementation of Korean Vowel 'ㅏ' Recognition based on Common Feature Extraction of Waveform Sequence," KIISE Transactions on Computing Practices, Vol. 20, No. 11, pp. 567-572, 2014. (in Korean) https://doi.org/10.5626/KTCP.2014.20.11.567