References
- Ahmad, M. I., Sinclair, C. D. and Werritty, A. (1988). Log-logistic flood frequency analysis. Journal of Hydrology, 98, 205-212. https://doi.org/10.1016/0022-1694(88)90015-7
- Bennett, S. (1983). Log-logistic regression models for survival data. Journal of Royal Statistical Society C, 32, 165-171.
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, edited by J.M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
- Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.1080/01621459.1996.10476668
- Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, Vol 38, edited by P. Lahiri, 135-207, Beachwood Ohio.
- Dey, A. K. and Kundu, D. (2010). Discriminating between the log-normal and log-logistic distributions. Communications in Statistics-Theory and Methods, 39, 280-292.
- Fisk P. R. (1961). The graduation of income distributions. Econometrica, 29, 171-185. https://doi.org/10.2307/1909287
- Geskus, R. B. (2001). Methods for estimating the AIDS incubation time distribution when data of seroconversion is censored. Statistics in Medicine, 20, 795-812. https://doi.org/10.1002/sim.700
- Kang, S. G., Kim, D. H. and Lee, W. D. (2013). Default Bayesian testing for the scale parameters in two parameter exponential distributions. Journal of the Korean Data & Information Science Society, 24, 949-957. https://doi.org/10.7465/jkdi.2013.24.4.949
- Kang, S. G., Kim, D. H. and Lee, W. D. (2014a). Noninformative priors for the log-logistic distribution. Journal of the Korean Data & Information Science Society, 25, 227-235. https://doi.org/10.7465/jkdi.2014.25.1.227
- Kang, S. G., Kim, D. H. and Lee, W. D. (2014b). Default Bayesian testing for the scale parameters in the half logistic distributions. Journal of the Korean Data & Information Science Society, 25, 465-472. https://doi.org/10.7465/jkdi.2014.25.2.465
- Lawless, J. F. (1982). Statistical models and methods for lifetime data, John Wiley and Sons, New York.
- O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
- O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
- Robson, A. and Reed, D. (1999). Statistical procedures for flood frequency estimation. Flood estimation handbook, 3, Institute of Hydrology, Wallingford, UK.
- Shoukri, M. M., Mian I. U. M., and Tracy, C. (1988). Sampling properties of estimators of log-logistic distribution with application to Canadian precipitation data. Canadian Journal of Statistics, 16, 223-236. https://doi.org/10.2307/3314729
- Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
Cited by
- Estimation of Gini-Simpson index for SNP data vol.28, pp.6, 2015, https://doi.org/10.7465/jkdi.2017.28.6.1557