DOI QR코드

DOI QR Code

A study on the improvement of the economic sentiment index for the Korean economy

경제심리지수의 유용성 및 개선방안에 관한 연구

  • Kim, Chiho (Department of Economics, Soongsil University) ;
  • Kim, Tae Yoon (Department of Statistics, Keimyung University) ;
  • Park, Inho (Department of Statistics, Pukyong University) ;
  • Ahn, Jae Joon (Department of Information and Statistics, Yonsei University)
  • Received : 2015.09.18
  • Accepted : 2015.10.14
  • Published : 2015.11.30

Abstract

In order to effectively understand the perception of businesses and consumers, the Bank of Korea has released Economic Sentiment Index (ESI), a composite indicator of business survey index (BSI) and consumer survey index (CSI), since 2102. The usefulness of ESI has been widely recognized. However, there exists a margin for improvement in terms of its predictive power. In this study, we evaluated the usefulness of ESI and improved the ESI by complementing its defaults. Our results of empirical analysis proved that dynamic optimal weight navigation process using the sliding window method is very useful in determining the optimal weights of configurations item of ESI based on economic situation.

경기상황에 대한 기업과 소비자들의 인식을 효과적으로 파악하기 위해 기업경기실사지수 (BSI)와 소비자동향지수 (CSI)를 편제하고 있는 한국은행은 2012년부터 이 두 지수를 합성한 경제심리지수 (ESI)를 추가로 개발하여 발표하고 있다. ESI는 그 유용성을 인정받고 있으나 지수의 예측력 측면에서 개선의 여지가 있는 것으로 나타났다. 본 연구에서는 ESI에 대해 유용성 평가 작업을 실시하고 그 결과를 토대로 현행 ESI의 편제방식의 개선 또는 보완 방법을 모색하였다. 실증분석 결과 ESI 구성요소의 최적 가중치 탐색과정에서 슬라이딩 윈도우 방법을 이용한 동적 최적 가중치 탐색은 기존 ESI의 구성방식을 보완하거나 또는 경제상황을 고려하여 ESI 구성항목들의 가중치를 부여하고자 할 때 매우 유용한 방법이라고 판단할 수 있었다.

Keywords

References

  1. Adamowicz, E., Dudek, S. and Walczyk, K. (2004). The usefulness of business surveys data for short-term forecasting. 27th CIRET Conference, Warsaw.
  2. Cheong, D. and Oh, K. J. (2014). Using cluster analysis and genetic algorithm to develop portfolio investment strategy based on investor information. Journal of the Korean Data & Information Science Society, 25, 107-117 https://doi.org/10.7465/jkdi.2014.25.1.107
  3. Chung, S. H. and Oh, K. J. (2014). Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market, Journal of the Korean Data & Information Science Society, 25, 281-292. https://doi.org/10.7465/jkdi.2014.25.2.281
  4. Claveria, O., Pons, E. and Ramos, R. (2004). Business and consumer expectations: Are they useful for forecasting? 27th CIRET Conference, Warsaw.
  5. European Commission (1997). The joint harmonized EU programme of business and consumer surveys: User-guide, European Commission, Brussels.
  6. European Commission (2003). The joint harmonized EU programme of business and consumer surveys: User-guide, European Commission, Brussels.
  7. Gabriele, G. A. and Ragsdell, K. M. (1977). The generalized reduced gradient method: A reliable tool for optimal design. Journal of Manufacturing Science and Engineering, 99, 394-400.
  8. Hild, F. (2007). A new synthetic indicator taking into account the dynamics of individual responses to the business tendency surveys. 28th CIRET Conference, Rome.
  9. Jang, G. S., Lai, F., Jiang, B. W., Pan, C. C. and Chien, L. H. (1993). Intelligent stock trading system with price trend prediction and reversal recognition using dual-module neural networks. Applied Intelligence, 3, 225-248. https://doi.org/10.1007/BF00871939
  10. Kim, C. (2006). Construction and introduction of an economic sentiment indicator. Quarterly National Accounts Review, 24, 85-105.
  11. Kim. S. (2012). The relation between economic sentiment indicator and economy. Journal of Economics and Business, 31, 1-14.
  12. Moon, H. (2011). Construction of an economic sentiment indicator for the Korean economy. The Korean Journal of Applied Statistics, 24, 745-758. https://doi.org/10.5351/KJAS.2011.24.5.745
  13. The Bank of Korea. (2014). An easy explanation of economic indicators, 263-264, The Bank of Korea, Seoul.

Cited by

  1. 협업필터링과 스태킹 모형을 이용한 상품추천시스템 개발 vol.9, pp.6, 2015, https://doi.org/10.22156/cs4smb.2019.9.6.083