References
- D. Auerbach, W. Moehring, and M. Moser, An analytic approach to the liebau problem of valveless pumping, Cardiovascular Engineering: An International Journal 4 (2004), no. 2, 201-207. https://doi.org/10.1023/B:CARE.0000031549.13354.5e
- R. P. Beyer, A computational model of the cochlea using the immersed boundary method, J. Comput. Phys. 98 (1992), no. 1, 145-162. https://doi.org/10.1016/0021-9991(92)90180-7
- A. Borzi and G. Propst, Numerical investigation of the liebau phenomenon, Z. Angew. Math. Phys. 54 (2003), no. 6, 1050-1072. https://doi.org/10.1007/s00033-003-1108-x
- T. T. Bringley, S. Childress, N. Vandenberghe, and J. Zhang, An experimental investigation and a simple model of a valveless pump, Phys. Fluids 20 (2008), no. 3, 033602; http://dx.doi.org/10.1063/1.2890790
- L. J. Fauci, Peristaltic pumping of solid particles, Comput. Fluids 21 (1992), no. 4, 583-598. https://doi.org/10.1016/0045-7930(92)90008-J
- L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion, J. Comput. Phys. 77 (1988), no. 1, 85-108. https://doi.org/10.1016/0021-9991(88)90158-1
- A. L. Fogelson and C. S. Peskin, A fast numerical method for solving the threedimensional stokes' equations in the presence of suspended particles, J. Comput. Phys. 79 (1988), no. 1, 50-69. https://doi.org/10.1016/0021-9991(88)90003-4
- S. Greenberg, D. M. McQueen, and C. S. Peskin, Three-dimensional fluid dynamics in a two-dimensional amount of central memory, Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986), 85-146, Math. Sci. Res. Inst. Publ., 7, Springer, New York, 1987.
- B. E. Grith and C. S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sucffiently smooth problems, J. Comput. Phys. 208 (2005), no. 1, 75-105. https://doi.org/10.1016/j.jcp.2005.02.011
- A. I. Hickerson and M. Gharib, On the resonance of a pliant tube as a mechanism for valveless pumping, J. Fluid Mech. 555 (2006), 141-148. https://doi.org/10.1017/S0022112006009220
- E. Jung, 2-D simulations of valveless pumping using the immersed boundary method, PhD thesis, New York University, Graduate School of Arts and Science, 1999.
- E. Jung, A mathematical model of valveless pumping: A lumped model with timedependent compliance, resistance, and inertia, Bull. Math. Biol. 69 (2007), no. 7, 2181-2198. https://doi.org/10.1007/s11538-007-9208-y
- E. Jung and W. Lee, Lumped parameter models of cardiovascular circulation in normal and arrhythmia cases, J. Korean Math. Soc 43 (2006), no. 4, 885-897. https://doi.org/10.4134/JKMS.2006.43.4.885
- E. Jung, S. Lim, W. Lee, and S. Lee, Computational models of valveless pumping using the immersed boundary method, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 25-28, 2329-2339. https://doi.org/10.1016/j.cma.2008.01.024
- E. Jung and C. S. Peskin, Two-dimensional simulations of valveless pumping using the immersed boundary method, SIAM J. Sci. Comput. 23 (2001), no. 1, 19-45. https://doi.org/10.1137/S1064827500366094
- Y. Kim, W. Lee, and E. Jung, An immersed boundary heart model coupled with a multicompartment lumped model of the circulatory system, SIAM J. Sci. Comput. 32 (2010), no. 4, 1809-1831. https://doi.org/10.1137/090761963
- W. Lee, E. Jung, and S. Lee, Simulations of valveless pumping in an open elastic tube, SIAM J. Sci. Comput. 31 (2009), no. 3, 1901-1925. https://doi.org/10.1137/08071613X
- W. Lee, S. Lim, and E. Jung, Dynamical motion driven by periodic forcing on an open elastic tube in fluid, Commun. Comput. Phys. 12 (2012), no. 2, 494-514. https://doi.org/10.4208/cicp.240111.060811s
- G. Liebau, Uber ein ventilloses pumpprinzip, Naturwissenschaften 41 (1954), 327-327.
- G. Liebau, Die stromungsprinzipien des herzens, Z. Kreislauorsch 44 (1955), 677-684.
- G. Liebau, Die bedeutung der tragheitskrafte fur die dynamik des blutkreislaufs, Z. Kreislaufforsch 46 (1957), 428-438.
- S. Lim and E. Jung, Three-dimensional simulations of a closed valveless pump system immersed in a viscous fluid, SIAM J. Appl. Math. 70 (2010), no. 6, 1999-2022. https://doi.org/10.1137/08073620X
- S. Lim and C. S. Peskin, Simulations of the whirling instability by the immersed boundary method, SIAM J. Sci. Comput. 25 (2004), no. 6, 2066-2083. https://doi.org/10.1137/S1064827502417477
- C. G. Manopoulos, D. S. Mathioulakis, and S. G. Tsangaris, One-dimensional model of valveless pumping in a closed loop and a numerical solution, Phys. Fluids 18 (2006), 017106. https://doi.org/10.1063/1.2165780
- D. M. McQueen, C. S. Peskin, and E. L. Yellin, Fluid dynamics of the mitral valve: physiological aspects of a mathematical model, Am. J. Physiol. Heart Circ. Physiol. 242 (1982), H1095-H1110. https://doi.org/10.1152/ajpheart.1982.242.6.H1095
- J. T. Ottesen, Valveless pumping in a fluid-filled closed elastic tube-system: onedimensional theory with experimental validation, J. Math. Biol. 46 (2003), no. 4, 309- 332. https://doi.org/10.1007/s00285-002-0179-1
- C. S. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of motion, PhD thesis, Sue Golding Graduate Division of Medical Sciences, Albert Einstein College of Medicine, Yeshiva University, 1972.
- C. S. Peskin, Numerical analysis of blood ow in the heart, J. Comput. Phys. 25 (1977), no. 3, 220-252. https://doi.org/10.1016/0021-9991(77)90100-0
- C. S. Peskin and D. M. McQueen, A three-dimensional computational method for blood flow in the heart I. Immersed elastic bers in a viscous incompressible fluid, J. Comput. Phys. 81 (1989), no. 2, 372-405. https://doi.org/10.1016/0021-9991(89)90213-1
- C. S. Peskin and D. M. McQueen, A general method for the computer simulation of biological systems interacting with fluids, Sympos. Soc. Exp. Biol. 49 (1995), 265-276.
- C. S. Peskin and B. F. Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys. 105 (1993), no. 1, 33-46. https://doi.org/10.1006/jcph.1993.1051
- G. Propst, Pumping effects in models of periodically forced flow configurations, Phys. D 217 (2006), no. 2, 193-201. https://doi.org/10.1016/j.physd.2006.04.007
- K. A. Rejniak, A single-cell approach in modeling the dynamics of tumor microregions, Math. Biosci. Eng. 2 (2005), no. 3, 643-655. https://doi.org/10.3934/mbe.2005.2.643
- D. Rinderknecht, A. I. Hickerson, and M. Gharib, A valveless micro impedance pump driven by electromagnetic actuation, J. Micromech. Microeng. 15 (2005), 861-866. https://doi.org/10.1088/0960-1317/15/4/026
- S. J. Shin and H. J. Sung, Three-dimensional simulation of a valveless pump, Int. J. Heat Fluid Flow 31 (2010), no. 5, 942-951. https://doi.org/10.1016/j.ijheatfluidflow.2010.05.001
- H. Thomann, A simple pumping mechanism in a valveless tube, Z. Angew. Math. Phys. 29 (1978), no. 2, 169-177. https://doi.org/10.1007/BF01601511
- S. Timmermann and J. T. Ottesen, Novel characteristics of valveless pumping, Phys. Fluids 21 (2009), 053601. https://doi.org/10.1063/1.3114603