References
- R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer, New York, 2009.
- I. Altun, G. Minak, and H. Dag, Multivalued F-contractions on complete metric space, J. Nonlinear Convex Anal. 16 (2015), no. 4, 659-666.
- M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), no. 2, 772-782. https://doi.org/10.1016/j.jmaa.2006.03.016
- V. Berinde and M. Pacurar, The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform. 22 (2013), no. 2, 35-42.
- Lj. B. Ciric, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), no. 7-8, 2716-2723. https://doi.org/10.1016/j.na.2009.01.116
- Lj. B. Ciric and J. S. Ume, Common fixed point theorems for multi-valued nonself mappings, Publ. Math. Debrecen 60 (2002), no. 3-4, 359-371.
- P. Z. Daffer and H. Kaneko, Fixed points of generalized contractive multivalued mappings, J. Math. Anal. Appl. 192 (1995), no. 2, 655-666. https://doi.org/10.1006/jmaa.1995.1194
- Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006), no. 1, 103-112. https://doi.org/10.1016/j.jmaa.2005.12.004
- V. I. Istratescu, Fixed Point Theory, Dordrecht D. Reidel Publishing Company 1981.
- M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 38, 8 pp. https://doi.org/10.1186/1029-242X-2014-38
- T. Kamran and Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Math. Comput. Modelling 54 (2011), no. 11-12, 2772-2777. https://doi.org/10.1016/j.mcm.2011.06.065
- D. Klim and D.Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007), no. 1, 132-139. https://doi.org/10.1016/j.jmaa.2006.12.012
- G. Minak, H. A. Hancer, and I. Altun, A new class of multivalued weakly Picard operators, Miskolc Mathematical Notes, In press.
- N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177-188. https://doi.org/10.1016/0022-247X(89)90214-X
- S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
- S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. 4 (1972), no. 5, 26-42.
- S. Reich, Some problems and results in fixed point theory, Topological methods in non- linear functional analysis (Toronto, Ont., 1982), 179-187, Contemp. Math., 21, Amer. Math. Soc., Providence, RI, 1983.
- T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340 (2008), no. 1, 752-755. https://doi.org/10.1016/j.jmaa.2007.08.022
Cited by
- Fixed point theorems for multivalued maps vol.20, pp.1, 2018, https://doi.org/10.1007/s11784-018-0495-8
- Some fixed point theorems for multivalued mappings concerning F-contractions vol.20, pp.4, 2018, https://doi.org/10.1007/s11784-018-0621-7