DOI QR코드

DOI QR Code

Application of Inactivation Model on Phytophthora Blight Pathogen (Phytophthora capsici) using Plasma Process

플라즈마 공정을 이용한 고추역병균(Phytophthora capsici) 불활성화 모델의 적용

  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 기초교육대학)
  • Received : 2015.08.17
  • Accepted : 2015.10.15
  • Published : 2015.11.30

Abstract

Ten empirical disinfection models for the plasma process were used to find an optimum model. The variation of model parameters in each model according to the operating conditions (first voltage, second voltage, air flow rate, pH, incubation water concentration) were investigated in order to explain the disinfection model. In this experiment, the DBD (dielectric barrier discharge) plasma reactor was used to inactivate Phytophthora capsici which cause wilt in tomato plantation. Optimum disinfection models were chosen among ten models by the application of statistical SSE (sum of squared error), RMSE (root mean sum of squared error), $r^2$ values on the experimental data using the GInaFiT software in Microsoft Excel. The optimum models were shown as Log-linear+Tail model, Double Weibull model and Biphasic model. Three models were applied to the experimental data according to the variation of the operating conditions. In Log-linear+Tail model, $Log_{10}(N_o)$, $Log_{10}(N_{res})$ and $k_{max}$ values were examined. In Double Weibull model, $Log_{10}(N_o)$, $Log_{10}(N_{res})$, ${\alpha}$, ${\delta}_1$, ${\delta}_2$, p values were calculated and examined. In Biphasic model, $Log_{10}(N_o)$, f, $k_{max1}$ and $k_{max2}$ values were used. The appropriate model parameters for the calculation of optimum operating conditions were $k_{max}$, ${\alpha}$, $k_{max1}$ at each model, respectively.

Keywords

References

  1. Albert, I., Marfart, P., 2005, A modified Weibull model for bacterial inactivation, Int. J. Food Microbiol., 100, 197-211. https://doi.org/10.1016/j.ijfoodmicro.2004.10.016
  2. Baek, S. E., Kim, D. S., Park, Y. S., 2012a, Applicatrion of disinfection models on the plasma process, J. Environ. Sci., 21(6), 695-704.
  3. Back, S. E., Kim, D. S., Park, Y. S., 2012b, Inactivation of Ralstonia Solanacearum using aquatic plasma process, 21(7), 797-804. https://doi.org/10.5322/JES.2012.21.7.797
  4. Baranyl, J., Roberts, T. A., 1994, A dynamic approach to predicting bacterial growth in foods, International Journal of Food Microbiology, 23, 277-294. https://doi.org/10.1016/0168-1605(94)90157-0
  5. Cerf, O., 1977, Tailing of survival curves of bacterial spores, J. Appl. Microbiol., 42, 1-19.
  6. Cho, J. Y., Seo, B. S., Chung, S. J., 2000, Present status and prospect of sterilization of nutrient solution for recycles hydroponics, Kor. J. Hort. Sci. Technol., 18(6), 890-899.
  7. Chung, S. W., Ha, Y. S., Lee, J. W., Park, J. M., Kwon, S. H., Lee, K. M., 2010, Development of a hydroponic recycle system using the visible light-reactive titanium dioxide photocatalyst for Sterilization of nutrient solution(I) - Determination of factors -. J. Biosystems Eng., 35(6), 420-425. https://doi.org/10.5307/JBE.2010.35.6.420
  8. Coroller, F. B., Gerbier, G., Stark, K. D. C., Grillet, C., Albina, E., Zientara, S., Roger, F., 2006, Performance evaluation of a competitive ELISA test used for Bluetongue antibody detection in France, Veterinary Microbiol., 118, 57-66. https://doi.org/10.1016/j.vetmic.2006.07.012
  9. Facile, N., Barbeau, B., Prevost, M., Joudjonou, B., 2000, Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone, Wat. Res., 34(12), 3238-3246. https://doi.org/10.1016/S0043-1354(00)00086-5
  10. Geeraerd, A. H., Herremans, C. H., Van Impe, J. F., 2000, Structural model requirement to describe microbial inactivation during a mild heat treatment, Int. J. Food Microbiol., 59, 185-209. https://doi.org/10.1016/S0168-1605(00)00362-7
  11. Geeraerd, A. H., Herremans, C. H., Van Impe, J. F., 2005, GInaFiT, a freeware tool asses non-log-linear microbial survivor curves, Int. J. Food Microbiol., 102, 95-105. https://doi.org/10.1016/j.ijfoodmicro.2004.11.038
  12. Joshi, A. A., Locke, B. R., Arce, P., Finney, W. C., 1995, Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution, J. Hazard. Mater., 41, 3-30. https://doi.org/10.1016/0304-3894(94)00099-3
  13. Kim, C. W., Kim, S. K., Yun, T. I., Ryu, C. H., 2003, Environmental Microbiology, Dongwha Pub., 2nd eds., 103-114.
  14. Kim, D. S., Park, Y. S., 2011, Optimization of air-plasma and oxygen-plasma process for water treatment using central composite design and response surface methodology, J. Environ. Sci., 20(7), 907-917.
  15. Kim, D. S., Park, Y. S., 2012a, Change of hydroponic components by plasma treatment, J. Environ. Sci., 21(3), 363-368.
  16. Kim, D. S., Park, Y. S., 2012b, Inactivation of Ralstonia Solanacearum using aquatic plasma process. J. Environ. Sci., 21(7), 797-804.
  17. Lee, J. S., Han, K. S., Park, J. H., Cheong, S. R., Jang, H. I., 2006, Disinfection of Phytophthora spp. in recycling nursery irrigation water by ozone treatment, Res. Plant Dis., 12(3), 272-277. https://doi.org/10.5423/RPD.2006.12.3.272
  18. Mafart, P., Couvert, O., Gailard, S., Leguerinel, I., 2002, On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model, Int. J. Food Microbiol., 72, 107-113. https://doi.org/10.1016/S0168-1605(01)00624-9
  19. McMeekin, T. A., Olley, J. N., Ross, T., Ratkowsky, D. A., 1993, Predictive Microbiology: Theory and Application, Research Studies Press Ltd., John Wiley & Sons, New York.
  20. Mitchell, R., 1974, Introduction to Environmental Microbiology, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
  21. Nam, Y. I., 2004, Present status and further prospects for development of closed hydroponics in Koera, Kor. Res. Soc. Protected Hort., 17(1), 1-7.
  22. No, M. Y., 2003, Nutrient solution recycling in closed hydroponics, Kor. Res. Soc. Protected Hort., 16(2), 35-42.
  23. Price, T. V., Nolan, P. D., 1984, Incidence and distribution of Pythium, Phytophthora and Fusarium spp. in recirculating nutrient film hydroponic systems, Inter. Soc. Soil Cul., Proc., 523-531.
  24. Rosso, L., Lobry, J. R., Bajard, S., Flandrois, J. P., 1995, Convenient model to describe the combined effects of temperature and pH on microbial growth, Appl. Environ. Microbiol., 61, 610-616.
  25. Runia, W. T., 1994, Disinfection of recirculation water from closed cultivation systems with ozone, Acta Hort., 361, 388-396.
  26. Sugiarto, A. T., Ito, S., Ohshima, T., Sato, M., Skalny, J. D., 2003, Oxidative decolorization of dyes by pulsed discharge plasma in water, J. Electrosts., 58, 135-145. https://doi.org/10.1016/S0304-3886(02)00203-6
  27. Van Boekkel, M. A. J. S., 2002, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells, Int. J. Food Microbiol., 74, 139-159. https://doi.org/10.1016/S0168-1605(01)00742-5
  28. Van Impe, J. F., Nicolai, B. M., Schellekens, M., Martens, T., De Baerdemaeker, J., 1995, predictive microbiology in a dynamic environment : A system theory approach, Int. J. Food Microbiol., 25, 227-249. https://doi.org/10.1016/0168-1605(94)00140-2