DOI QR코드

DOI QR Code

Free vibration analysis of a rotating non-uniform functionally graded beam

  • Ebrahimi, Farzad (Mechanical Engineering department, faculty of engineering, Imam Khomeini International University) ;
  • Dashti, Samaneh (Mechanical Engineering department, faculty of engineering, Imam Khomeini International University)
  • 투고 : 2014.08.26
  • 심사 : 2015.05.12
  • 발행 : 2015.11.25

초록

In this paper, free vibration characteristics of a rotating double tapered functionally graded beam is investigated. Material properties of the beam vary continuously through thickness direction according to the power-law distribution of the volume fraction of the constituents. The governing differential equations of motion are derived using the Hamilton's principle and solved utilizing an efficient and semi-analytical technique called the Differential Transform Method (DTM). Several important aspects such as taper ratios, rotational speed, hub radius, as well as the material volume fraction index which have impacts on natural frequencies of such beams are investigated and discussed in detail. Numerical results are tabulated in several tables and figures. In order to demonstrate the validity and accuracy of the current analysis, some of present results are compared with previous results in the literature and an excellent agreement is observed. It is showed that the natural frequencies of an FG rotating double tapered beam can be obtained with high accuracy by using DTM. It is also observed that nondimensional rotational speed, height taper ratio, power-law exponent significantly affect the natural frequencies of the FG double tapered beam while the effects of hub radius and breadth taper ratio are negligible.

키워드

참고문헌

  1. Abdel-Halim Hassan, I.H. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Comput., 127(1), 1-22. https://doi.org/10.1016/S0096-3003(00)00123-5
  2. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
  3. Attarnejad, R. and Shahba, A. (2011), "Basic displacement functions for centrifugally stiffened tapered beams", Int. J. Numer. Method. Biomed. Eng., 27(9), 1385-1397. https://doi.org/10.1002/cnm.1365
  4. Attarnejad, R., Semnani, S.H. and Shahba, A. (2010), "Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams", Finite Elem. Anal. Des., 46(10), 916-929. https://doi.org/10.1016/j.finel.2010.06.005
  5. Balkaya, M., Kaya, M.O. and Saglamer, A. (2009), "Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method", Arch. Appl. Mech., 79(2), 135-146. https://doi.org/10.1007/s00419-008-0214-9
  6. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  7. Benatta, M.A., Mechab, I., Tounsi, A. and Adda Bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44(2), 765-773. https://doi.org/10.1016/j.commatsci.2008.05.020
  8. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higherorder shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  9. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  10. Bouiadjra, R.B., Bedia, E.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., Int. J., 48(4), 547-567. https://doi.org/10.12989/sem.2013.48.4.547
  11. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  12. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  13. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  14. Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
  15. Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009a), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech.-A/Solids, 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008
  16. Ebrahimi, F. and Rastgoo, A. (2009b), "FSDPT based study for vibration analysis of piezoelectric coupled annular FGM plate", J. Mech. Sci. Technol., 23(8), 2157-2168. https://doi.org/10.1007/s12206-009-0433-1
  17. Fazelzadeh, S.A. and Hosseini, M. (2007), "Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials", J. Fluid. Struct., 23(8), 1251-1264. https://doi.org/10.1016/j.jfluidstructs.2007.06.006
  18. Fazelzadeh, S.A., Malekzadeh, P., Zahedinejad, P. and Hosseini, M. (2007), "Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method", J. Sound Vib., 306(1), 333-348. https://doi.org/10.1016/j.jsv.2007.05.011
  19. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. (ASCE), 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  20. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  21. Hodges, D.Y. and Rutkowski, M.Y. (1981), "Free-vibration analysis of rotating beams by a variable-order finite-element method", AIAA J., 19(11), 1459-1466. https://doi.org/10.2514/3.60082
  22. Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
  23. Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  24. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  25. Li, L., Zhang, D.G. and Zhu, W.D. (2014), "Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect", J. Sound Vib., 333(5), 1526-1541. https://doi.org/10.1016/j.jsv.2013.11.001
  26. Mahi, A., Adda Bedia, E.A., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperaturedependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887. https://doi.org/10.1016/j.compstruct.2010.01.010
  27. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  28. Mohanty, S.C., Dash, R.R. and Rout, T. (2013), "Free vibration of a functionally graded rotating Timoshenko beam using FEM", Adv. Struct. Eng., 16(2), 405-418. https://doi.org/10.1260/1369-4332.16.2.405
  29. Nachum, S. and Altus, E. (2007), "Natural frequencies and mode shapes of deterministic and stochastic non-homogeneous rods and beams", J. Sound Vib., 302(4), 903-924. https://doi.org/10.1016/j.jsv.2006.12.021
  30. O zdemir, O . and Kaya, M.O. (2006), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289(1), 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
  31. Piovan, M.T. and Sampaio, R. (2009), "A study on the dynamics of rotating beams with functionally graded properties", J. Sound Vib., 327(1), 134-143. https://doi.org/10.1016/j.jsv.2009.06.015
  32. Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. https://doi.org/10.1016/j.ijmecsci.2014.03.014
  33. Rajasekaran, S. (2013), "Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods", Appl. Math. Model., 37(6), 4440-4463. https://doi.org/10.1016/j.apm.2012.09.024
  34. Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  35. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
  36. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  37. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
  38. Singh, K.V., Li, G. and Pang, S.S. (2006), "Free vibration and physical parameter identification of non-uniform composite beams", Compos. Struct., 74(1), 37-50. https://doi.org/10.1016/j.compstruct.2005.03.015
  39. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  40. Zarrinzadeh, H., Attarnejad, R. and Shahba, A. (2012), "Free vibration of rotating axially functionally graded tapered beams", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226, 363-379. https://doi.org/10.1177/0954410011413531
  41. Zhou, J.K. (1986), "Differential transformation and its applications for electrical circuits", Peoples Republic of China, Huazhong University Press, Wuhan, China, pp. 1279-1289. [In Chinese]
  42. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
  2. Nonlinear buckling of functionally graded nano-/micro-scaled porous beams vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.07.045
  3. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  4. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
  5. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
  6. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  7. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  8. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  9. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  10. Three-dimensional vibration of rotating functionally graded beams 2018, https://doi.org/10.1177/1077546317703867
  11. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  12. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  13. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  14. Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity vol.09, pp.05, 2017, https://doi.org/10.1142/S1758825117500764
  15. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  16. Forced vibration analysis of functionally graded porous deep beams vol.186, 2018, https://doi.org/10.1016/j.compstruct.2017.12.013
  17. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  18. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
  19. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.289
  20. A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.369
  21. Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
  22. Free vibration of imperfect sigmoid and power law functionally graded beams vol.30, pp.6, 2019, https://doi.org/10.12989/scs.2019.30.6.603
  23. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2015, https://doi.org/10.12989/gae.2019.18.2.161
  24. Free vibration of AFG beams with elastic end restraints vol.33, pp.3, 2015, https://doi.org/10.12989/scs.2019.33.3.403
  25. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037