DOI QR코드

DOI QR Code

On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams

  • Tagrara, S.H. (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benachour, Abdelkader (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bouiadjra, Mohamed Bachir (Algerian National Thematic Agency of Research in Science and Technology (ATRST)) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • 투고 : 2015.01.14
  • 심사 : 2015.05.07
  • 발행 : 2015.11.25

초록

In this work, a trigonometric refined beam theory for the bending, buckling and free vibration analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature of this model is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration responses of CNTRC beam are discussed.

키워드

과제정보

연구 과제 주관 기관 : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA) in Algeria

참고문헌

  1. Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Braz. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 256(5176), 1212-1214.
  5. Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019
  6. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  7. Alibeigloo, A. (2014), "Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers", Compos. Struct., 118, 482-495. https://doi.org/10.1016/j.compstruct.2014.08.004
  8. Ashrafi, B. and Hubert, P. (2006), "Modeling the elastic properties of carbon nanotube array/polymer composites", Compos. Sci. Technol., 66(3-4), 387-396. https://doi.org/10.1016/j.compscitech.2005.07.020
  9. Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., Int. J., 2(4), 199-210. https://doi.org/10.12989/anr.2014.2.4.199
  10. Bakhti, K., Kaci, A., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., Int. J., 14(4), 335-347. https://doi.org/10.12989/scs.2013.14.4.335
  11. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  12. Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  13. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  14. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  15. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  16. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  17. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  18. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  19. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  20. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  21. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  22. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  23. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  24. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810. https://doi.org/10.1007/s11012-013-9827-3
  25. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36(11), 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
  26. Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Method. Appl. Mech. Eng., 193(17-20), 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
  27. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  28. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comp. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  29. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  30. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 467-479.
  31. Hu, N., Fukunaga, H., Lu, C., Kameyama, M. and Yan, B. (2005), "Prediction of elastic properties of carbon nanotube reinforced composites", P. Roy. Soc. A,, 461(2058), 1685-1710. https://doi.org/10.1098/rspa.2004.1422
  32. Jha, D.K., Kant, T. and Singh, R.K. (2012), "Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates", Nucl. Eng. Des., 250, 8-13. https://doi.org/10.1016/j.nucengdes.2012.05.001
  33. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
  34. Kaci, A., Tounsi, A., Bakhti, K. and Adda Bedia, E.A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., Int. J., 12(6), 491-504. https://doi.org/10.12989/scs.2012.12.6.491
  35. Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotube-reinforced composite beams", Mech. Adv. Mater. Struct., 20(1), 28-37. https://doi.org/10.1080/15376494.2011.581412
  36. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Computat. Method., 11(5), 135007.
  37. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  38. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013a), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
  39. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013b), "Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method", Comput. Method. Appl. Mech. Eng., 256, 189-199. https://doi.org/10.1016/j.cma.2012.12.007
  40. Li, X.F., Wang, B.L. and Han, J.C. (2010), "A higher-order theory for static and dynamic analyses of functionally graded beams", Arch. Appl. Mech., 80(10), 1197-1212. https://doi.org/10.1007/s00419-010-0435-6
  41. Liew, K.M., Yang, J. and Kitipornchai, S. (2003), "Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading", Int. J. Solid Strut., 40(15), 3869-3892. https://doi.org/10.1016/S0020-7683(03)00096-9
  42. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  43. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  44. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  45. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modelling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63(11), 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
  46. Ould Larbi, L, Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  47. Ray, M.C. and Batra, R.C. (2007), "A single-walled carbon nanotube reinforced 1-3 piezoelectric composite for active control of smart structures", Smart Mater. Struct., 16(5), 1936-1947. https://doi.org/10.1088/0964-1726/16/5/051
  48. Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  49. Sayyad, A.S. and Ghugal, Y.M. (2014), "Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory", Struct. Eng. Mech., Int. J., 51(5), 867-891. https://doi.org/10.12989/sem.2014.51.5.867
  50. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x
  51. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solids, 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  52. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  53. Thostenson, E.T. and Chou, T.W. (2003), "On the elastic properties of carbon nanotube-based composites: Modelling and characterization", J. Phys. A-Appl. Phys., 36(5), 573-582. https://doi.org/10.1088/0022-3727/36/5/323
  54. Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  55. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013a), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  56. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013b), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  57. Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube", Int. J. Solids Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014
  58. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  59. Wu, C.-P. and Li, H.-Y. (2014), "Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions", J. Vib. Control, 1077546314528367.
  60. Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
  61. Xu, Y.S., Ray, G. and Abdel-Magid, B. (2006), "Thermal behavior of single walled carbon nanotube polymer-matrix composites", Compos. Part A, 37(1), 114-121. https://doi.org/10.1016/j.compositesa.2005.04.009
  62. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  63. Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos.: Part B, 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014
  64. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on postbuckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loading using VIM", Steel Compos. Struct., Int. J., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753
  65. Yesilce, Y. (2010), "Effect of axial force on the free vibration of Reddy-Bickford multi- span beam carrying multiple spring-mass systems", J. Vib. Control, 16(1), 11-32. https://doi.org/10.1177/1077546309102673
  66. Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", Struct. Eng. Mech., Int. J., 31(4), 453-476. https://doi.org/10.12989/sem.2009.31.4.453
  67. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  68. Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A., 447(1-2), 51-57. https://doi.org/10.1016/j.msea.2006.10.054
  69. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010
  70. Ziane, N., Meftah, S.A., Ruta, G., Tounsi, A. and Adda Bedia, E.A. (2015), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., Int. J., 54(3), 579-595. https://doi.org/10.12989/sem.2015.54.3.579
  71. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  2. A study on nonlinear vibration behavior of CNT-based representative volume element vol.55, 2016, https://doi.org/10.1016/j.ast.2016.06.005
  3. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  4. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading vol.109, 2017, https://doi.org/10.1016/j.compositesb.2016.10.050
  5. Free vibration of FG-CNT reinforced composite skew plates vol.58, 2016, https://doi.org/10.1016/j.ast.2016.08.018
  6. Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method vol.105, 2016, https://doi.org/10.1016/j.compositesb.2016.09.001
  7. Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
  8. Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.193
  9. Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation 2017, https://doi.org/10.1002/adv.21821
  10. Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium vol.53, pp.6, 2018, https://doi.org/10.1007/s11029-018-9708-x
  11. A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
  12. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  13. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  14. Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads vol.161, 2017, https://doi.org/10.1016/j.compstruct.2016.10.135
  15. Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.691
  16. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  17. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  18. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  19. Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach 2017, https://doi.org/10.1002/pc.24409
  20. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  21. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  22. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
  23. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  24. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  25. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  26. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  27. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets vol.134, 2018, https://doi.org/10.1016/j.compositesb.2017.09.043
  28. Finite element and micromechanical modeling for investigating effective material properties of polymer–matrix nanocomposites with microfiber, reinforced by CNT arrays vol.8, pp.3, 2016, https://doi.org/10.1007/s40091-016-0132-y
  29. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading vol.133, pp.2, 2018, https://doi.org/10.1140/epjp/i2018-11874-6
  30. Haar Wavelet Method for Nonlinear Vibration of Functionally Graded CNT-Reinforced Composite Beams Resting on Nonlinear Elastic Foundations in Thermal Environment vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/9597541
  31. Nonlinear Frequency Responses of Functionally Graded Carbon Nanotube-Reinforced Sandwich Curved Panel Under Uniform Temperature Field vol.10, pp.03, 2018, https://doi.org/10.1142/S175882511850028X
  32. Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes vol.51, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  33. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
  34. Collapse of steel cantilever roof of tribune induced by snow loads vol.23, pp.3, 2015, https://doi.org/10.12989/scs.2017.23.3.273
  35. A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation vol.23, pp.3, 2015, https://doi.org/10.12989/scs.2017.23.3.317
  36. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2015, https://doi.org/10.12989/sss.2017.19.6.601
  37. Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading vol.20, pp.2, 2015, https://doi.org/10.12989/cac.2017.20.2.229
  38. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.385
  39. A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2015, https://doi.org/10.12989/eas.2017.13.5.509
  40. Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2015, https://doi.org/10.12989/anr.2018.6.1.039
  41. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  42. Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions vol.28, pp.2, 2018, https://doi.org/10.12989/scs.2018.28.2.149
  43. Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory vol.28, pp.2, 2015, https://doi.org/10.12989/scs.2018.28.2.195
  44. Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation vol.67, pp.2, 2018, https://doi.org/10.12989/sem.2018.67.2.125
  45. Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2015, https://doi.org/10.12989/anr.2018.6.3.219
  46. Analytical determination of shear correction factor for Timoshenko beam model vol.29, pp.4, 2015, https://doi.org/10.12989/scs.2018.29.4.483
  47. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2015, https://doi.org/10.12989/sss.2018.22.5.527
  48. Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations vol.6, pp.3, 2019, https://doi.org/10.12989/aas.2019.6.3.207
  49. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  50. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  51. Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.133
  52. Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT vol.7, pp.6, 2015, https://doi.org/10.12989/anr.2019.7.6.405
  53. Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation vol.233, pp.12, 2015, https://doi.org/10.1177/1464420719866222
  54. Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect vol.35, pp.3, 2015, https://doi.org/10.12989/scs.2020.35.3.449
  55. Dynamic Analysis of Multi-Stepped Functionally Graded Carbon Nanotube Reinforced Composite Plate with General Boundary Condition vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/5579439
  56. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2015, https://doi.org/10.12989/anr.2021.10.3.281
  57. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.117
  58. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
  59. Perturbation Method for Thermal Post-Buckling Analysis of Shear Deformable FG-CNTRC Beams with Different Boundary Conditions vol.21, pp.13, 2021, https://doi.org/10.1142/s0219455421501753
  60. Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore vol.170, pp.None, 2015, https://doi.org/10.1016/j.tws.2021.108626