DOI QR코드

DOI QR Code

Effect of Cyclic Soil Model on Seismic Site Response Analysis

지반 동적거동모델에 따른 부지응답해석 영향연구

  • Lee, Jinsun (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Noh, Gyeongdo (Department of Civil and Environmental Engineering, Wonkwang University)
  • Received : 2015.09.02
  • Accepted : 2015.10.28
  • Published : 2015.12.01

Abstract

Nonlinear soil behavior before failure under dynamic loading is often implemented in a numerical analysis code by a mathematical fitting function model with Masing's rule. However, the model may show different behavior with an experimental results obtained from laboratory test in damping ratio corresponding secant shear modulus for a certain shear strain rage. The difference may come from an unique soil characteristics which is unable to implement by using the existing mathematical fitting model. As of now, several fitting models have been suggested to overcome the difference between model and real soil behavior but consequence of the difference in dynamic analysis is not reviewed yet. In this paper, the effect of the difference on site response was examined through nonlinear response history analysis. The analysis was verified and calibrated with well defined dynamic geotechnical centrifuge test. Site response analyses were performed with three mathematical fitting function models and compared with the centrifuge test results in prototype scale. The errors on peak ground acceleration between analysis and experiment getting increased as increasing the intensity of the input motion. In practical point of view, the analysis results of accuracy with the fitting model is not significant in low to mid input motion intensity.

전단파괴 이전 지반의 동적비선형거동특성은 일반적으로 함수형 피팅모델과 Masing 법칙을 이용하여 수치해석프로그램에 사용된다. 그러나 대부분의 함수형 피팅모델은 특정 전단변형률 영역에서 실험결과 대비 전단탄성계수와 감쇠비의 오차를 유발하는 것이 일반적인 현상이다. 이러한 오차의 원인은 현재 피팅모델로 표현하기 어려운 지반재료의 고유 특성에 기인할 수 있다. 지금까지 상기 문제를 해결하기 위하여 몇몇 피팅모델이 제안되었으나, 오차의 영향이 지진 시 부지응답해석에 미치는 영향은 아직까지 구체적으로 검토된 바는 없다. 본 논문에서는 상기 영향 검토를 응답이력해석을 통하여 실시하였다. 세 개의 서로 다른 함수형 피팅모델을 이용하여 부지응답해석을 시행하였으며, 그 결과는 동적원심모형시험 결과의 원형 계측치를 기준으로 검증을 실시하였다. 실험과 해석 간의 오차는 입력지진 크기가 증가함에 따라 커짐을 알 수 있었다. 저-중간 강도의 입력지진 범위에서 함수형 피팅모델에 따른 해석의 정확도 차이는 실용적인 측면에 있어서 큰 차이가 나지 않음을 알 수 있었다.

Keywords

References

  1. Dokainish, M. A. and Subbaraj, K. (1989), A survey of direct time-integration methods in computational strucural dynamics-I, Explicit methods, Computers and Structures, Vol. 32, No. 6, pp. 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3
  2. Hardin, B. O. and Drnevich, V. P. (1972), Shear modulus and damping in soils: design equation and curves Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 98, No. 7, pp. 667-691.
  3. Iai, S. (2001), Seismic performance-based design of port structures and simulation techniques, In International Workshop on Earthquake Simulation in Geotechnical Engineering, pp. 1-12.
  4. Idriss, I. M. (1993), Assessment of Site Response Analysis Procedure, NIST, GCR, pp. 95-667.
  5. Itasca (2011), FLAC (Fast Lagrangian Analysis of Continua) 3D Version 4.0 dynamic analysis manual, Itasca Consulting Group, Minneapolis, MN., pp. 52-59.
  6. Kalkan, E. and Luco, N. (2011), Special issue on earthquake ground-motion selection and modification for nonlinear dynamic analysis of structures. Journal of structural engineering ASCE, Vol. pp. 137-277.
  7. Kuhlemeyer, R. L. and Lysmer, J. (1973), Finite element method accuracy for wave propagation problems, J Soil Mech Found Eng, Div ASCE, Vol. 99, No. 5, pp. 421-427.
  8. Lee, J. S. (2013), Appropriate input earthquake motion for the verification of seismic response analysis by geotechnical dynamic centrifuge test, EESK, J Earthquake Eng, Vol. 17, No. 5, pp. 209-217. https://doi.org/10.1080/13632469.2012.707346
  9. Lysmer, J. and Kuhlemeyer, R. L. (1969), Finite dynamic model for infinite media, J Eng Mech, Vol. 95, No. 4, pp. 859-877.
  10. Masing, G. (1926), Eigenspannungen und verfestigung beim messing, In: Proceedings of the second international congress of applied mechanics, pp. 332-335.
  11. Mejia, L. H. and Dawson, E. M. (2006), Earthquake deconvolution for FLAC, Proceedings of 4th International FLAC Symposium on Numerical Modeling in Geomechanics, Madrid, Spain, ISBN 0-9767577-0-2, pp. 4-10,
  12. Newmark, N. M. (1965), Effects of earthquakes on dams and embankments, Geotechnique, Vol. 15, No. 2, pp. 139-160. https://doi.org/10.1680/geot.1965.15.2.139
  13. Nozu, A., Ichii, K. and Sugano, T. (2004), Seismic design of port structures, J, of Japan Association for Earthquake Engineering, Vol. 4, No. 3, pp. 195-208. https://doi.org/10.5610/jaee.4.3_195
  14. Park, D. and Hashash, M. A. (2004), Soil damping formulation in nonlinear time domain site response analysis, J of earthquake engineering, Vol. 8, No. 2, pp. 249-274. https://doi.org/10.1080/13632460409350489
  15. Phillips, C. and Hashash, Y. M. A. (2009), Damping formulation for nonlinear 1D site response analyses, Soil dynamics and earthquake engineering, Vol. 29, pp. 1143-1158. https://doi.org/10.1016/j.soildyn.2009.01.004
  16. Prevost, J. H. (1982), Two-surface versus multi-surface plasticity theories: a critical assessment, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 6, pp. 323-338. https://doi.org/10.1002/nag.1610060305
  17. Purzin, A. M. and Shiran, A. (2000), Effects of the constitutive relationship on seismic response of soils. part I. Constitutive modelling of cyclic behavior of soils, Soil Dynamics and Earthquake Engineering, Vol. 19, pp. 305-318. https://doi.org/10.1016/S0267-7261(00)00027-0
  18. Pyke, R. M. (1979), Nonlinear soil models for irregular cyclic loadings, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 105, No. 6, pp. 715-726.
  19. Schofield, A. N. (1980), Cambridge geotechnical centrifuge operations, Twentieth Rankine Lect Geotech, Vol. 30, No. 3, pp. 227-268. http://dx.doi.org/10.1680/geot.1980.30.3.227.
  20. Streeter, V. L., Wylie, E. B. and Richart, F. E. (1974), Soil motion computations by characteristics method, Journal of Geotechnical Engineering Division, ASCE, Vol. 100, pp. 247-263.
  21. Stewart, J. P., Hashash, Y. M. A., Matasovic, N., Pyke, R., Wang, Z. and Yang, Z. (2008), Benchmarking of nonlinear geotechnical ground response analysis procedures, Pacific Earthquake Engineering Research Center, Peer Report. pp. 1-175.
  22. Subbaraj, K. and Dokainish, M. A. (1989), A survey of direct time-integration methods in computational strucural dynamics-II, Implicit methods, Computers and Structures, Vol. 32, No. 6, pp. 1387-1401. https://doi.org/10.1016/0045-7949(89)90315-5
  23. Yingwei, W. U. and Prakash, S. (2000), Seismic displacements of rigid retaining walls on submergence, 12th World conference on earthquake engineering, Auckland, New Zealand, Paper No. 0562.