DOI QR코드

DOI QR Code

Kinetic Study of Coal/Biomass Blended Char-CO2 Gasification Reaction at Various temperature

다양한 온도에서 석탄/바이오매스의 혼합 촤-CO2 가스화 반응특성 연구

  • Kim, Jung Su (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Sang Kyum (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Jong Hoon (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Si Hoon (Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Graduate School of Energy Science and Technology, Chungnam National University)
  • 김정수 (충남대학교 에너지과학기술대학원) ;
  • 김상겸 (충남대학교 에너지과학기술대학원) ;
  • 조종훈 (충남대학교 에너지과학기술대학원) ;
  • 이시훈 (한국에너지기술연구원) ;
  • 이영우 (충남대학교 에너지과학기술대학원)
  • Received : 2014.12.23
  • Accepted : 2015.03.27
  • Published : 2015.12.01

Abstract

In this study, we investigated the effects of the temperature on the coal/biomass $char-CO_2$ gasification reaction under isothermal conditions of $700{\sim}900^{\circ}C$ using the lignite(Indonesia Eco coal) with biomass (korea cypress). Ni catalysts were impregnated on the coal by the ion-exchange method. Four kinetic models which are shrinking core model (SCM), volumetric reaction model (VRM), random pore model (RPM) and modified volumetric reaction model (MVRM) for gas-solid reaction were applied to the experimental data against the measured kinetic data. The Activation energy of Ni-coal/biomass, non-catalyst coal/biomass $Char-CO_2$ gasification was calculated from the Arrhenius equation.

본 연구는 이온교환법을 통해 Ni촉매를 담지한 저등급 석탄(인도네시아 Eco탄)과 바이오매스(대한민국 상록수)의 혼합물로부터 제조된 촤(char)를 $700{\sim}900^{\circ}C$ 등온조건에서 온도가 반응속도에 미치는 영향에 대해 알아보았다. $Char-CO_2$ 가스화 반응은 700, 750, 800, 850, $900^{\circ}C$의 온도에서 진행하였으며, 기-고체 반응의 가스화 거동특성을 알아보기 위하여 각각 다른 가정을 갖고 있는 shrinking core model(SCM), volumetric reaction model(VRM), random pore model(RPM), modified volumetric reaction model(MVRM)을 실험결과에 적용하여 비교하였다. Arrhenius equation를 이용하여 Ni-coal/biomass와 Non-catalyst coal/biomass의 활성화에너지를 구하였고 이를 비교하였다.

Keywords

References

  1. British Petroleum., "BP Statistical Review of World Energy 2013".
  2. Gong, S. J., Zhu, X., Kim, Y. J., Song, B. H., Yang, W., Moon, W. S. and Byoun, Y. S., "A Kinetic Study of Steam Gasificationof Low Rank Coal, Wood Chip and Petroleum Coke," Korean Chem. Eng. Res., 48(1), 80-87(2010).
  3. Lee, S. H., and Kim, S. D., "Technology for the Preparation of Ash-free Coal from Low Rank Coal(LRC)," Korean Chem. Eng. Res., 46(1), 443-450(2008).
  4. Park, D. K., Kim, S. D., Lee, S. H. and Lee, J. G., "Co-pyrolysis Characteristics of Sawdust and Coal Blend in TGA and a Fixed Bed Reactor," Bioresour Technol., 101(15), 6151-6156(2010). https://doi.org/10.1016/j.biortech.2010.02.087
  5. Umar, D. F., Usui, H. and Komoda, Y., "Effect of Dispersing and Stabilizing Additives on Rheological Characteristics of the Upgraded Brown Coal Water Mixture," Fuel, 90(4), 611-615(2009).
  6. Hall, D. O., "Biomass Energy," Energy, 19(8), 711-737(1991).
  7. Pan, Y. G., Velo, E., Roca, X., Manya, J. J. and Puigjaner, L., "Fluidized-bed Co-gasification of Residual Biomass/poor Coal Blends for Fuel Gas Production," Fuel, 70(11), 1317-1326(2000). https://doi.org/10.1016/0016-2361(91)90221-U
  8. Wu, C., Huang, H., Zheng, S. and Yin, X., "An economic Analysis of Biomass Gasification and Power Generation in China," Bioresour Technol., 83(1), 65-70(2002). https://doi.org/10.1016/S0960-8524(01)00116-X
  9. Taba, L. E., Irfan, M. F., Wan, A. M., Wan, D. and Chakrabarti, M. H., "The Effect of Temperature on Various Parameters in Coal, Biomass and CO-gasification: A Review," Renewable and Sustainable Energy Reviews., 16(8), 5584-5596(2012). https://doi.org/10.1016/j.rser.2012.06.015
  10. Miccio, F., Ruoppolo, G., Kalisz, S., Andersen, L., Morgan, T. J., and Baxter, D., "Combined Gasification of Coal and Biomass in Internal Circulating Fluidized bed, Fuel Processing Technology," Fuel, 95(22), 45-54(2012).
  11. Kim, D. W., Lee, J. M., Kim, J. S. and Seon, P. K., "Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite Using TGA," Korean Chem. Eng. Res., 48(1), 58-67(2010).
  12. Williams, A., Kashania, M. and Jones, M., "Combustion of Pulverised Coal and Biomass," Prog Energy Combust Sci., 27(6), 587-610(2001). https://doi.org/10.1016/S0360-1285(01)00004-1
  13. Lee, S. H., Hyun, J. S., Rhim, Y. J., Park, Y. Y. and Kim, S. C., "Coal/Biomass Co-firing in Utility Boilers," Energy Eng., 4(5), 197-200(2003).
  14. Corella, J., Toledo, J. and Molina, G., "Steam Gasification of Coal at Low-Medium ($600-800^{\circ}C$) Temperature with Simultaneous $CO_2$ Capture Influidized Bed at Atmospheric Pressure," Ind. Eng. Chem. Res., 45(18), 6137-6146(2006). https://doi.org/10.1021/ie0602658
  15. Park, Ji. Y., Lee, D. K., Hwang, S. C., Kim, S. K., Lee, S. H., Yoon, S. K., Yoo, J. H. Lee, S. H. and Rhee, Y. W., "Comparative Modeling of Low Temperature Char-$CO_2$ Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration," Clean Technology., 19(3), 306-312(2013). https://doi.org/10.7464/ksct.2013.19.3.306
  16. Walker, P. L., Jr., Shelef, M. and Anderson, R. A., "In Chemistry and Physics of Carbon," 4(13), 287-383(1968).
  17. McKee, D. W., "Gasification of Graphite in Carbon Dioxide and Water Vapor-the Catalytic Effects of Alkali Metal Salts," Carbon, 20(1), 59-66(1982). https://doi.org/10.1016/0008-6223(82)90075-6
  18. Ochoa, J., Cassanello, M. C., Bonelli, P. R. and Cukierman, A. L., "$CO_2$ Gasification of Argentinean Coal Chars: A Kinetic Characterization," Fuel Process. Technol., 74(3), 161-176(2001). https://doi.org/10.1016/S0378-3820(01)00235-1
  19. Ye, D. P., Agnew, J. B. and Zhang, D. K., "Gasification of a South Australian Low-Rank Coal with Carbon Dioxide and Steam: Kinetics and Reactivity Studies," Fuel, 77(11), 1209-1219(1998). https://doi.org/10.1016/S0016-2361(98)00014-3
  20. Xiao, X., Cao, J., Meng, X., Le, L. L., Ogawa, Y. and Sato, K., "Synthesis Gas Production from Catalytic Gasification of Waste Biomass Using Nickel-loaded Brown Coal Char," Fuel, 130, 135-140(2013).
  21. Li, L., Morishita, K., Mogi, H., Yamasaki, K. and Takarada, T., "Low-temperature Gasification of a Woody Biomass Under a Nickel-loaded Brown Coal Char," Fuel, 91(8), 889-894(2010).
  22. Roberts, D. G. and Harris, D. J., "Char Gasification in Mixtures of $CO_2$ and $H_2O$ : Competition and Inhibition," Fuel, 86, 2672-2678 (2007). https://doi.org/10.1016/j.fuel.2007.03.019
  23. Tomitam, A., Yoshida, K., Nishiyama, Y. and Tamai, Y., "Formation of Pyrolytic Carbon from Benzene over Nickel and Some Properties of the Carbon Formed," Carbon, 10, 601-606(1972). https://doi.org/10.1016/0008-6223(72)90098-X
  24. Tomitam A., Ohtsuka, Y. and Tamai, Y., "Low Temperature Gasification of Brown Coals Catalyzed by Nickel," Fuel, 62, 105-154(1983).
  25. Kim, D. H., Choi, S. M., Christopher, R. and Shaddix, M. G., "Effect of $CO_2$ Gasification Reaction on Char Particle Combustion in Oxy-fuel Conditions," Fuel, 120(15), 130-140(2014). https://doi.org/10.1016/j.fuel.2013.12.004
  26. Lee, D. K., Kim, S. K., Hwang, S. C., Lee, S. H. and Rhee, Y. W., "Kinetic Study on Char-$CO_2$ Catalytic Gasification of an Indonesian Lignite," Korean Chem. Eng., 52(4), 544-552(2014). https://doi.org/10.9713/kcer.2014.52.4.544
  27. Wen, C. Y., "Noncatalytic Heterogeneous Solid-fluid Reaction Models," Ind. & Eng. Chem., 60(9), 34-54(1968). https://doi.org/10.1021/ie50705a007
  28. Shida, M. and Wen, C. Y., "Comparison of Kinetic and Diffusional Models for Solid-gas Reactions," AIChE J., 14(2), 311-317(1968). https://doi.org/10.1002/aic.690140218
  29. Asaoka, S., Sakata, Y. and Tong, C., "Kinetic Evaluation of the Reactivity of Various Coal Chars for Gasification with Carbon Dioxide in Comparison with Steam," Int. Chem. Eng., 25(1), (1985).
  30. Bhatia, S. K. and Perlmutter, D. D., "A Random Pore Model for Fluid-solid Reaction: I Isothermal, Kinetic Control," AIChE J., 23(3), 379-386(1980).
  31. Kim, S. H. and Rhee, Y. W., "Reforming of Toluene Using Nickelloaded Coal," 2014.
  32. Choi, Y. K., Moon, S. H., Lee, H. I., Lee, W. Y. and Rhee, H. K., "Kinetics of Non-catalytic Steam Gasification of Various Coal Chars under Isothermal Condition," Korean Chem. Eng. Res., 30(3), 292-302(1992).
  33. Bak, Y. C., Yang, H. S. and Son, J. E., "Isothermal Coal Char Combustion and Char-steam Gasification Reactivity," J. Korean Inst. Chem. Eng., 29(3), 323-335(1991).
  34. Lee, I. C., "Reactivity of Coal-steam Gasification at High Temperature," Korean J. of Chem. Eng., 4(2), 194-200(1987). https://doi.org/10.1007/BF02697437
  35. Hippo, E. J., Jenkins, R. G. and Walker, P. L., "Enhancement of Lignite Char Reactivity to Steam by Cation Addition," Fuel, 58(5), 338-344(1979). https://doi.org/10.1016/0016-2361(79)90150-9
  36. Liu, G. S., Tate, A. G., Bryant, G. W. and Wall, T. F., "Mathematical Modeling of Coal Char Reactivity with $CO_2$ at High Pressures and Temperature," Fuel, 79(10), 1145-1154(2000). https://doi.org/10.1016/S0016-2361(99)00274-4
  37. Kajitani, S., Suzuki, N., Ashizawa, M. and Hara, S., "$CO_2$ Gasification Rate Analysis of Coal Char in Entrained Flow Coal Gasification," Fuel, 85(2), 163-169(2006). https://doi.org/10.1016/j.fuel.2005.07.024
  38. Kim, Y. T., Seo, D. K. and Hwang, J., "The Effect of Coal Particle Size on Char-$CO_2$ Gasification Reactivity by Gas Analysis," Korean Chem. Eng., 49(3), 372-380(2011). https://doi.org/10.9713/kcer.2011.49.3.372
  39. Gomez, A., Ollero, P. and Fernandez, C., "Diffusional Effects in $CO_2$ Gasification Experiments with Single Biomass Char Particles," Energy Fuels, 20(5), 2202-2210(2006). https://doi.org/10.1021/ef050365a
  40. Li, S. and Cheng, Y., "Catalytic Gasification of Gas-coal Char in $CO_2$," Fuel, 74(3), 456-458(1995). https://doi.org/10.1016/0016-2361(95)93482-S
  41. Song, B. H., Jang, Y. W. and Byoun, Y. S., "Steam Gasification of a Bituminous Char Catalyzed by A Salt Mixture of Potassium Sulfate and Nikel Nitrate," Korean Chem. Eng., 41(3), 349-356 (2003).
  42. Miura, K., Aimi, M., Naito, T. and Hashimoto, K., "Steam Gasification of Carbon: Effect of Several Metals on the Rate of Gasification and Rates of CO and $CO_2$ Formation," Fuel, 65(3), 407-411(1986). https://doi.org/10.1016/0016-2361(86)90304-2
  43. Chan, F. L. and Tanksale, A., "Review of Recent Developments in Ni-based Catalysts for Biomass Gasification," Renewable and Sustainable Energy Reviews, 38, 428-438(2014). https://doi.org/10.1016/j.rser.2014.06.011
  44. Kim, Y. T., Seo, D. K. and Hwang, J. H., "Characteristics of Various Ranks of Coal Gasification with $CO_2$ by Gas Analysis," Korean Society of Combustion, 15(2), 41-49(2010).
  45. Zhang, L., Huang, J., Fang, Y. and Wang, Y., "Gasification Reactivity and Kinetics of Typical Chinese Anthracite Chars with Steam and $CO_2$," Energy Fuels, 20(3), 1201-1210(2006). https://doi.org/10.1021/ef050343o
  46. Tangsathitkulchai, C., Junpirom, S. and Katesa, J., "Comparison of Kinetic Models for $CO_2$ Gasification of Coconut-Shell Chars: Carbonization Temperature Effects on Char Reactivity and Porous Properties of Produced Activated Carbons," Ind Crops Prod., 17(1), 13-28(2012).
  47. Song, B. H. and Kim, S. D., "Catalytic Activity of Alkali and Iron Salt Mixtures for Steam-char Gasification," Korean Chem. Eng. Res., 72(6), 797-803(1993).
  48. Jeong, H. J., Park, S. S. and Hwang, J. H., "Co-Gasification of Coal-Biomass Blended Char with $CO_2$ at Temperatures of $900-1100^{\circ}C$," Fuel, 116(15), 465-470(2014). https://doi.org/10.1016/j.fuel.2013.08.015
  49. Kayembe, N. and Pulsifer, A. H., "Kinetics and Catalysis of the Reaction of Coal Char and Steam," Fuel, 55(3), 211-216(1976). https://doi.org/10.1016/0016-2361(76)90090-9
  50. Li, S. and Cheng, Y., "Catalytic Gasification of Gas-Coal Char in $CO_2$," Fuel, 74(3), 456-458(1995). https://doi.org/10.1016/0016-2361(95)93482-S