DOI QR코드

DOI QR Code

Kinematic Modeling of a Track Trolley Using Extended Kalman Filter

확장 칼만필터를 이용한 궤도틀림 트롤리의 운동학적 모형화

  • Lee, Jun S. (High Speed Railroad System Research Center, Korea Railroad Research Institute) ;
  • Choi, Il Yoon (High Speed Railroad System Research Center, Korea Railroad Research Institute) ;
  • Kim, Sun Hee (High Speed Railroad System Research Center, Korea Railroad Research Institute) ;
  • Um, Ju Hwan (Railroad Safety and Certification Center High Speed Railroad System Research Center, Korea Railroad Research Institute)
  • Received : 2015.03.03
  • Accepted : 2015.07.28
  • Published : 2015.10.31

Abstract

Continuous as well as discrete measurement of the track geometry based on a track trolley are investigated to enhance the efficiency of the trolley and to minimize the measurement errors. A new kinematic model based on the track coordinates involving transition and circular curves is developed to improve the accuracy of the measurement; a nonlinear Extended Kalman Filter (EKF) is employed to linearize the governing equations. The proposed model is verified with the ideal track geometry in terms of both discrete and continuous measurement. Comparison with the previous models is also made to prove the applicability of the kinematic model.

본 연구에서는 궤도틀림 측정용 트롤리의 사용성을 증진하기 위한 방편의 하나로 트롤리의 정지시 뿐만 아니라 이동시 계측방안과 이에 따른 계측오차의 최소화 방안에 대하여 논의하였다. 이를 위하여 트롤리의 완화곡선 및 원곡선내 주행에 따른 궤도틀림 측정의 정밀도를 향상시키기 위한 운동학적 관계식을 새롭게 제안하였으며 비선형 확장 칼만필터를 도입하여 계측오차를 최소화하였다. 제안한 모형의 적용성 파악을 위하여 이론적인 궤도상태를 가정한 후 이산형 및 연속형 궤도틀림 측정에 따르는 표준편차를 산정하였으며 이 결과, 제안한 모형의 효용성을 입증하였다. 또한 기존 궤도 틀림 모형과의 비교를 통해 제안한 운동학적 관계식의 우월성을 입증하였다.

Keywords

References

  1. I. Choi, J. Um, J. Lee, S. Kwon (2014) Development of the high speed track measurement system for railway maintenance, 1st year Report, KRRI.
  2. R. Glaus, G. Peels, U. Muller, A. Geiger (2004) Precise rail track surveying, GPS World, pp. 12-18.
  3. S. Julier, J. Uhlmann (2004) Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92(3), pp. 401-422. https://doi.org/10.1109/JPROC.2003.823141
  4. M. Grewal, A. Andrews (2001) Kalman filtering, Wiley International, New York, pp. 133-145.
  5. G. Welch, G. Bishop (2006) An introduction to the Kalman filter, TR 95-041, UNC Chapel Hill, pp. 6-11.
  6. S.P. Kim (2010) Understanding of Kalman Filter, Ajin Pub, pp. 161-191.
  7. B. Akpinar, E. Gulal (2013) Railway track geometry determination using adaptive Kalman filtering model, Measurement, 46, pp. 639-645. https://doi.org/10.1016/j.measurement.2012.08.023
  8. M. Shanmugavel (2007) Path planning of multiple autonomous vehicles, Ph.D. Thesis, Cranfield Univ. U.K.
  9. J. Lee, I. Choi, S. Kim, D. Moon (2015) Kinematic modeling of a track geometry using an unscented Kalman filter, submitted to Measurement.