DOI QR코드

DOI QR Code

Effect of gas detonation on response of circular plate-experimental and theoretical

  • Received : 2015.05.10
  • Accepted : 2015.11.03
  • Published : 2015.11.25

Abstract

A series of experimental results on thin mild steel plates clamped at the boundary subjected to gas detonation shock loading are presented. Detonation occurred by mixing Acetylene (C2H2)-Oxygen (O2) in various volume ratio and different initial pressure. The applied impulse is varied to give deformation in the range from 6 mm to 35 mm. Analytical modeling using energy method was also performed. Dependent material properties, as well as strain rate sensitivity, are included in the theoretical modeling. Prediction values for midpoint deflections are compared with experimental data. The analytical predictions have good agreement with experimental values. Moreover, it has been shown that the obtained model has much less error compared with those previously proposed in the literature.

Keywords

References

  1. Babaei, H. and Darvizeh, A. (2011), "Investigation into the response of fully clamped circular steel, copper, and aluminum plates subjected to shock loading", Mech. Bas. Des. Struct., 39(4), 507-526. https://doi.org/10.1080/15397734.2011.583204
  2. Babaei, H. and Darvizeh, A. (2012), "Analytical study of plastic deformation of clamped circular plates subjected to impulsive loading", J. Mech. Mater. Struct., 7(4), 309-322. https://doi.org/10.2140/jomms.2012.7.309
  3. Babaei, H., Mirzababaie Mostofi, T. and Alitavoli, M. (2015a), "Study on the response of circular thin plate under low velocity impact", Geomech. Eng., 9(2), 207-218. https://doi.org/10.12989/gae.2015.9.2.207
  4. Babaei, H., Mirzababaie Mostofi, T. and Alitavoli, M. (2015b), "Experimental and theoretical study of large deformation of rectangular plates subjected to water hammer shock loading", Proc. IMechE., PartE: J. Mech. Eng. Sci., DOI: 10.1177/0954408915611055.
  5. Batra, R.C. and Dubey, R.N. (1971), "Impulsively loaded circular plates", Int. J. Solids. Struct., 7(8), 965-978. https://doi.org/10.1016/0020-7683(71)90075-8
  6. Bisadi, H. and Meybodi, M.K. (2011), "Experimental, numerical, and theoretical analyses of simultaneous forming-welding of inhomogeneous plates", Proc. IMechE., PartC: J. Mech. Eng. Sci., 225(11), 2552-2564. https://doi.org/10.1177/0954406211403667
  7. Cezary, S. and Bojar, Z. (2008), "Gas detonation spray forming of Fe-Al coatings in the presence of interlayer", Surf. Coat. Tech., 202(15), 3538-3548. https://doi.org/10.1016/j.surfcoat.2007.12.029
  8. Duffey, T.A. (1967), "The large deflection dynamic response of clamped circular plates subjected to explosive loading", Sandia Laboratory Research Report No. SC-RR-67-532.
  9. Gharababaei, H. and Darvizeh, A. (2010), "Experimental and analytical investigation of large deformation of thin circular plates subjected to localized and uniform impulsive loading", Mech. Bas. Des. Struct., 38(2), 171-189. https://doi.org/10.1080/15397730903554633
  10. Ghosh, S.K. and Weber, H. (1976), "Experimental-theoretical corrections of impulsively loaded axisymmetric rigid-plastic membrane", Mech. Res. Commun., 3, 423-428. https://doi.org/10.1016/0093-6413(76)90105-1
  11. Hadavi, V., Ashani, J.Z. and Mozaffari, A. (2012), "Theoretical calculation of the maximum radial deformation of a cylindrical shell under explosive forming by a new energy approach", Proc. IMechE., PartC: J. Mech. Eng. Sci., 226(3), 576-584. https://doi.org/10.1177/0954406211416190
  12. Honda, A. and Suzuki, M. (1999), "Sheet metal forming by using gas imploding detonation", J. Mater. Proc. Tech., 85(1), 198-203. https://doi.org/10.1016/S0924-0136(98)00317-3
  13. Hudson, G.E. (1951), "A theory of the dynamic plastic deformation of a thin diaphragm", J. Appl. Phys., 22, 1-11. https://doi.org/10.1063/1.1699815
  14. Jones, N. (1989), Structural impact, Cambridge University Press, Cambridge.
  15. Li, F., Mo, J., Zhou, H. and Fang, Y. (2013), "3D Numerical simulation method of electromagnetic forming for low conductive metals with a driver", Int. J. Adv. Manuf. Tech., 64(9-12), 1575-1585. https://doi.org/10.1007/s00170-012-4124-1
  16. Li, L.J. and Jiang, W.K. (2011), "A new effective method to predict the permanent deformation of plane plates subjected to underwater shock loading", Proc. IMechE., PartC: J. Mech. Eng. Sci., 225(5), 1069-1075. https://doi.org/10.1243/09544062JMES2178
  17. Lippman, H. (1974), "Kinetics of the axisymmetric rigid-plastic membrane supplied to initial impact", Int. J. Mech. Sci., 16, 297-303. https://doi.org/10.1016/0020-7403(74)90046-0
  18. Meng, Z., Huang, S., Hu, J., Huang, W. and Xia, Z. (2011), "Effects of process parameters on warm and electromagnetic hybrid forming of magnesium alloy sheets", J. Mater. Proc. Tech., 211(5), 863-867. https://doi.org/10.1016/j.jmatprotec.2010.05.008
  19. Meybodi, M.K. and Bisadi, H. (2009), "Gas detonation forming by a mixture of $H_2+O_2$ detonation", World Acad. Sci. Eng. Tech., 33, 55-58.
  20. Mynors, D.J. and Zhang, B. (2002), "Applications and capabilities of explosive forming", J. Mater. Proc. Tech., 125, 1-25.
  21. Nurick, G.N. and Martin, J.B. (1989a), "Deformation of thin plates subjected to impulsive loading-a review (partII)", Int. J. Impact. Eng., 8, 171-186. https://doi.org/10.1016/0734-743X(89)90015-8
  22. Nurick, G.N. and Martin, J.B. (1989b), "Deformation of thin plates subjected to impulsive loading-a review (partI)", Int. J. Impact. Eng., 8, 159-170. https://doi.org/10.1016/0734-743X(89)90014-6
  23. Perrone, N. and Bhadra, P. (1984), "Simplified large deflection mode solutions for impulsively loaded viscoplastic circular membranes", J. Appl. Mech., 51, 505-509. https://doi.org/10.1115/1.3167665
  24. Psyk, V., Risch, D., Kinsey, B.L., Tekkaya, A.E. and Kleiner, M. (2011), "Electromagnetic forming-a review", J. Mater. Proc. Tech., 211(5), 787-829. https://doi.org/10.1016/j.jmatprotec.2010.12.012
  25. Shen, W.Q. and Jones, N. (1993), "Dynamic response and failure of fully clamped circular plates under impulsive loading", Int. J. Impact. Eng., 13(2), 259-278. https://doi.org/10.1016/0734-743X(93)90096-P
  26. Shepherd, J.E. (2009), "Structural response of piping to internal gas detonation", J. Press. Vess-T, ASME, 131(3), 031204. https://doi.org/10.1115/1.3089497
  27. Skews, B.W., Kosing, O.E. and Hattingh, R.J. (2004), "Use of a liquid shock tube as a device for the study of material deformation under impulsive loading conditions", Proc. IMechE. PartC: J. Mech. Eng. Sci., 218(1), 39-51. https://doi.org/10.1243/095440604322786938
  28. Symonds, P.S. and Wierzbicki, T. (1979), "Membrane mode solution for impulsively loaded circular plates", J. Appl. Mech., 46, 58-64. https://doi.org/10.1115/1.3424528
  29. Wen, H.M. (1998), "Deformation and tearing of clamped circular work-hardening plates under impulsive loading", Int. J. Pres. Ves. Pip., 75, 67-73. https://doi.org/10.1016/S0308-0161(98)00023-4
  30. Wielage, H. and Vollertsen, F. (2011), "Classification of laser shock forming within the field of high speed forming processes", J. Mater. Proc. Tech., 211(5), 953-957. https://doi.org/10.1016/j.jmatprotec.2010.07.012
  31. Yasar, M. (2004), "Gas detonation forming process and modeling for efficient spring-back prediction", J. Mater. Proc. Tech., 150(3), 270-279. https://doi.org/10.1016/j.jmatprotec.2004.02.060
  32. Yasar, M., Demirci, H.I. and Kadi, I. (2006), "Detonation forming of aluminium cylindrical cups experimental and theoretical modelling", Mater. Des., 27(5), 397-404. https://doi.org/10.1016/j.matdes.2004.11.005

Cited by

  1. Gas mixture detonation method, a novel processing technique for metal powder compaction: Experimental investigation and empirical modeling vol.315, 2017, https://doi.org/10.1016/j.powtec.2017.04.006
  2. Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates vol.109, 2016, https://doi.org/10.1016/j.tws.2016.10.009
  3. Experimental and Numerical Studies of Sheet Metal Forming with Damage Using Gas Detonation Process vol.7, pp.12, 2017, https://doi.org/10.3390/met7120556
  4. The influence of gas mixture detonation loads on large plastic deformation of thin quadrangular plates: Experimental investigation and empirical modelling vol.118, 2017, https://doi.org/10.1016/j.tws.2017.04.031
  5. On dimensionless numbers for the dynamic plastic response of quadrangular mild steel plates subjected to localized and uniform impulsive loading vol.231, pp.5, 2017, https://doi.org/10.1177/0954408916650713
  6. Experimental and theoretical study on large ductile transverse deformations of rectangular plates subjected to shock load due to gas mixture detonation vol.53, pp.4, 2017, https://doi.org/10.1111/str.12235
  7. Closed-form analytical analysis on the effect of coupled membrane and bending strains on the dynamic plastic behaviour of fully clamped thin quadrangular plates due to uniform and localized impulsive loading vol.123, 2018, https://doi.org/10.1016/j.tws.2017.11.010
  8. Dynamic compaction of cold die Aluminum powders vol.10, pp.1, 2016, https://doi.org/10.12989/gae.2016.10.1.109
  9. An experimental and numerical investigation on impact spot welding of metallic plates using gas mixture detonation technique vol.235, pp.4, 2015, https://doi.org/10.1177/1464420720982329
  10. High-velocity powder compaction: An experimental investigation, modelling, and optimization vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.145
  11. Impact spot welding of Al/Cu dissimilar metals using gas mixture detonation technique: An experimental investigation and finite element simulation vol.65, pp.None, 2015, https://doi.org/10.1016/j.jmapro.2021.03.056