DOI QR코드

DOI QR Code

건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building

  • 고민욱 (부경대학교 안전공학과) ;
  • 오창보 (부경대학교 안전공학과) ;
  • 한용식 (한국기계연구원 에너지플랜트안전연구실) ;
  • 도규형 (한국기계연구원 에너지플랜트안전연구실)
  • Ko, Min Wook (Dept. of Safety Engineering, Pukyong National University) ;
  • Oh, Chang Bo (Dept. of Safety Engineering, Pukyong National University) ;
  • Han, Youn Shik (Dept. of Energy Plant Safety Technology, Korea Institute of Machinery and Materials) ;
  • Do, Kyu Hyung (Dept. of Energy Plant Safety Technology, Korea Institute of Machinery and Materials)
  • 투고 : 2015.08.11
  • 심사 : 2015.08.17
  • 발행 : 2015.10.31

초록

도심지역을 단순 모델링한 실규모 공간에서 누출된 프로판 확산과정에 대해 대와동모사(Large Eddy Simulation: LES), 분리와동모사(Detached Eddy Simulation: DES) 및 비정상 레이놀즈평균기법(Reynolds Averaged Navier-Stokes: RANS)을 이용한 3가지 전산해석을 수행하였다. 전산해석은 FLUENT 14를 이용하였고 격자계는 ICEM-CFD를 이용하여 구성하였다. 그 결과 건물 주변의 프로판 농도분포는 주변 와구조와 밀접한 관련이 있어 이러한 와구조를 합리적으로 예측하는 정도에 따라 농도분포가 크게 차이날 수 있음을 알았다. LES와 DES는 비교적 유사한 와구조와 프로판 농도분포를 보이지만 RANS는 너무 부드러운 농도분포를 보여 복잡한 비정상적인(Unstedy) 난류 유동장을 재현하는데 한계가 있어 가스연료 누출 초기의 농도분포 전개과정을 예측하는 데에는 어려움이 있을 것으로 판단된다. 해석결과와 계산시간까지 고려한다면 DES 방법이 실규모에서의 가스연료 누출 확산과정에 대한 CFD 해석방법으로 적합할 것으로 판단된다.

Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

키워드

참고문헌

  1. X. X. Li, C. H. Liu, D. Y. C. Leung and K. M. Lam, "Recent Progress in CFD Modelling of Wind Field and Pollutant Transport in Street Canyons", Atmospheric Environment, Vol. 40, No. 29, pp. 5640-5658 (2006). https://doi.org/10.1016/j.atmosenv.2006.04.055
  2. N. S. Holmes and L. Morawska, "A Review of Dispersion Modelling and its Application to the Dispersion of Particles: An Overview of Different Dispersion Models Available", Atmospheric Environment, Vol. 40, No. 30, pp. 5902-5928 (2006). https://doi.org/10.1016/j.atmosenv.2006.06.003
  3. Z. Bo and C. Guo-Ming, "Quantitative Risk Analysis of Toxic Gas Release Caused Poisoning-A CFD and Dose-Response Model Combined Approach", Process Safety and Environmental Protection, Vol. 88, pp. 253-262 (2010). https://doi.org/10.1016/j.psep.2010.03.003
  4. B. S. Lee, T. Y. Kim, D. H. Lee and D. H. Lee, "Passive Control of the Vortex Shedding behind a Rectangular Cylinder Near a Wall", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 32, No. 6, pp. 16-22 (2004). https://doi.org/10.5139/JKSAS.2004.32.6.016
  5. M. Pontiggia, G. Landucci, V. Busini, M. Derudi, M. Alba, M. Scaioni, S. Bonvicini, V. Cozzani, et al., "CFD Model Simulation of LPG Dispersion in Urban Areas", Atmospheric Environment, Vol. 45, No. 24, pp. 3913-3923 (2011). https://doi.org/10.1016/j.atmosenv.2011.04.071
  6. S. M. Salim, R. Buccolieri, A. Chan and S. D. Sabatino, "Numerical Simulation of Atmospheric Pollutant Dispersion in an Urban Street Canyon: Comparison between RANS and LES", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, No. 2, pp. 103-113 (2011). https://doi.org/10.1016/j.jweia.2010.12.002
  7. S. Hung, Q. S. Li and S. Xu, "Numerical Evaluation of Wind Effects on a Tall Steel Building by CFD", Journal of Constructional Steel Research, Vol. 63, No. 5, pp. 612-627 (2007). https://doi.org/10.1016/j.jcsr.2006.06.033
  8. S. B. Pope, "Turbulent Flows", CAMBRIDGE UNIVERSITY PRESS, U.K (2000).
  9. P. Sagaut, "Large Eddy Simulation for Incompressible Flows", Springer, U.S.A. (1998).
  10. P. R. Spalart, "Detached-Eddy Simulation", Annual Review of Fluid Mechanics, Vol. 41, pp. 181-202 (2009). https://doi.org/10.1146/annurev.fluid.010908.165130
  11. L. S. Hedges, A. K. Travin and P. R. Spalart, "Detached-Eddy Simulation over a Simplified Landing Gear", Journal of Fluids Engineering, Vol. 124, No. 2, pp. 413-423 (2002). https://doi.org/10.1115/1.1471532
  12. FLUENT Theory Guide, ANSYS Inc.
  13. ANSYS Co., "ANSYS Ver.14" (2012).
  14. ANSYS Co., "ICEM CFD Ver.13" (2010).
  15. Z. N. Pintaric, "Assessment of the Consequences of Accident Scenarios Involving Dangerous Substances", Process Safety and Environmental Protection, Vol. 85, No. 1, pp. 23-38 (2007). https://doi.org/10.1205/psep06014
  16. I. Glassman, "Combustion: Third edition", ACADEMIC PRESS, U.S.A. (2013).