DOI QR코드

DOI QR Code

Extracting parameters of TMD and primary structure from the combined system responses

  • Wang, Jer-Fu (921 Earthquake Museum of Taiwan, National Museum of Natural Science) ;
  • Lin, Chi-Chang (Department of Civil Engineering, National Chung Hsing University)
  • Received : 2014.09.03
  • Accepted : 2015.06.29
  • Published : 2015.11.25

Abstract

Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology of the Republic of China (Taiwan)

References

  1. Alexander, N.A. and Schilder, F. (2009), "Exploring the performance of a nonlinear tuned mass damper", J. Sound Vib., 319(1-2), 445-462. https://doi.org/10.1016/j.jsv.2008.05.018
  2. Almazan, J.L., Espinoza, G. and Aguirre, J.J. (2012), "Torsional balance of asymmetric structures by means of tuned mass dampers", Eng. Struct., 42, 308-328. https://doi.org/10.1016/j.engstruct.2012.04.034
  3. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33, 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024
  4. Bekdas, G. and Nigdeli, S.M. (2013), "Mass ratio factor for optimum tuned mass damper strategies", Int. J. Mech. Sci., 71, 68-84. https://doi.org/10.1016/j.ijmecsci.2013.03.014
  5. Bakre, S.V. and Jangid, R.S. (2004), "Optimum multiple tuned mass dampers for base-excited damped main system", Int. J. Struct. Stab. Dy., 4(4), 527-542. https://doi.org/10.1142/S0219455404001367
  6. Bisegna, P. and Caruso, G. (2011), "Closed-form formulas for the optimal pole-based design of tuned mass dampers", J. Sound Vib., 331(10), 2291-2314. https://doi.org/10.1016/j.jsv.2012.01.005
  7. Brock, J.E. (1946), "A note on the damped vibration absorber", J. Appl. Mech. T. Am. Soc. Mech. E., 13, A-284.
  8. Brownjohn, J.M.W., Carden, E.P., Goddard, C.R. and Oudin, G. (2010), "Real-time performance monitoring of tuned mass damper system for a 183m reinforced concrete chimney", J. Wind Eng. Ind. Aerod., 98(3), 169-179. https://doi.org/10.1016/j.jweia.2009.10.013
  9. Chakraborty, S. and Roy, B.K. (2011), "Reliability based optimum design of tuned mass damper in seismic vibration control of structures with bounded uncertain parameters", Probabilist. Eng. Mech., 26(2), 215-221. https://doi.org/10.1016/j.probengmech.2010.07.007
  10. Cheung Y. L. and Wong, W. O. (2011), "H-infinity optimization of a variant design of the dynamic vibration absorber-revisited and new results", J. Sound Vib., 330(16), 3901-3912. https://doi.org/10.1016/j.jsv.2011.03.027
  11. Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, New York, U.S.A.
  12. Farshidianfar, A. and Soheili, S. (2013), "Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction", Soil Dyn. Earthq. Eng., 51, 14-22. https://doi.org/10.1016/j.soildyn.2013.04.002
  13. Frahm, H. (1911), Device for damping vibrations of bodies. U.S. Patent No. 989-958.
  14. Greco, R. and Marano, G.C. (2013), "Optimum design of tuned mass dampers by displacement and energy perspectives", Soil Dyn. Earthq. Eng., 49, 243-253. https://doi.org/10.1016/j.soildyn.2013.02.013
  15. Hahnkamm, E. (1932), "Die dampfung von fundamentschwingungen bei veranderlicher erregerfrequenz", Ingenieur Archiv, 4(2), 192-201. https://doi.org/10.1007/BF02079857
  16. Jangid, R.S. (1999), "Optimum multiple tuned mass dampers for base-excited undamped system", Earthq. Eng. Struct. D., 28(9), 1041-1049. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<1041::AID-EQE853>3.0.CO;2-E
  17. Jangn S.J., Brennan, M.J., Rustighi, E. and Jung, H.J. (2012), "A simple method for choosing the parameters of a two degree-of-freedom tuned vibration absorber", J. Sound Vib., 331(21), 4658-4667. https://doi.org/10.1016/j.jsv.2012.05.020
  18. Juang, J.N. (1997), "System realization using information matrix", J. Guid. Control Dynam., 21(3), 492-500.
  19. Kang, N., Kim, H., Choi, S., Jo, S., Hwang, J.S. and Yu, E. (2012), "Performance evaluation of TMD under typhoon using system identification and inverse wind load estimation", Comput.-Aided Civ. Inf., 27(6), 455-473. https://doi.org/10.1111/j.1467-8667.2011.00755.x
  20. Kareem, A. and Kline, S. (1995), "Performance of multiple mass dampers under random loading", J. Struct. Eng.-ASCE, 121(2), 348-361. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(348)
  21. Kwok, K.C.S. (1984), "Damping increase in building with tuned mass damper", J. Eng. Mech.-ASCE, 110(11), 1645-1649. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:11(1645)
  22. Li, C. (2000), "Performance of multiple tuned mass dampers for attenuating undesirable oscillators of structures under the ground acceleration", Earthq. Eng. Struct. D., 29(9), 1405-1421. https://doi.org/10.1002/1096-9845(200009)29:9<1405::AID-EQE976>3.0.CO;2-4
  23. Li, C. and Zhu, B. (2006), "Estimating double tuned mass dampers for structures under ground acceleration using a novel optimum criterion", J. Sound Vib., 298(1-2), 280-297. https://doi.org/10.1016/j.jsv.2006.05.018
  24. Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, C.S., Su, S.C. and Wu, C.F. (2011), "Dynamic behavior of Taipei 101 tower: field measurement and numerical analysis", J. Struct. Eng.-ASCE, 137(1), 143-155. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000264
  25. Lin, C.C., Hu, C.M., Wang, J.F. and Hu, R.Y. (1994), "Vibration control effectiveness of passive tuned mass dampers", J. Chin. Inst. Eng., 17(3), 367-376. https://doi.org/10.1080/02533839.1994.9677600
  26. Lin, C.C., Wang, C.E., Wu, H.W. and Wang, J.F. (2005), "On-line building damage assessment based on earthquake records", Smart Mater. Struct., 14(3), 137-153. https://doi.org/10.1088/0964-1726/14/1/013
  27. Lin, C.C., Wang, J.F. and Tsai, C.H. (2008), "Dynamic parameter identifications for irregular buildings considering soil-structure interaction effects", Earthq. Spectra, 24(3), 641-666. https://doi.org/10.1193/1.2946439
  28. Lin, C.C., Wang, J.F., Lien, C.H., Chiang, H.W. and Lin, C.S. (2010), "Optimum design and experimental study of multiple tuned mass dampers with limited stroke", Earthq. Eng. Struct. D., 39(14), 1631-1651. https://doi.org/10.1002/eqe.1008
  29. Lin, C.C. and Wang, J.F. (2012), Optimal Design and Practical Considerations of Tuned Mass Dampers for Structural Control, Design Optimization of Active and Passive Structural Control Systems, 126-149, IGI Global, Hershey, PA, USA.
  30. Luft, R.W. (1979), "Optimal tuned mass dampers for buildings", J. Struct. Div.-ASCE, 105(12), 2766-2772.
  31. Marano, G.C. and Quaranta, G. (2009), "Robust optimum criteria for tuned mass dampers in fuzzy environments", Appl. Soft Comput., 9, 1232-1243. https://doi.org/10.1016/j.asoc.2009.03.010
  32. Marano, G.C., Greco, R. and Chiaia, B. (2010a), "A comparison between different optimization criteria for tuned mass dampers design", J. Sound Vib., 329(23), 4880-4890. https://doi.org/10.1016/j.jsv.2010.05.015
  33. Marano, G.C., Greco, R. and Sgobba, S. (2010b), "A comparison between different robust optimum design approaches: Application to tuned mass dampers", Probabilist. Eng. Mech., 25(1), 108-118. https://doi.org/10.1016/j.probengmech.2009.08.004
  34. McNamara, R.J. (1977), "Tuned mass dampers for buildings", J. Struct. Div.-ASCE, 103(9), 1785-1798.
  35. Mohtat, A. and Dehghan-Niri, E. (2011), "Generalized framework for robust design of tuned mass damper systems", J. Sound Vib., 330(5), 902-922. https://doi.org/10.1016/j.jsv.2010.09.007
  36. Oka, S.Y., Song, J. and Park, K.S. (2009), "Development of optimal design formula for bi-tuned mass dampers using multi-objective optimization", J. Sound Vib., 322(1-2), 60-77. https://doi.org/10.1016/j.jsv.2008.11.023
  37. Ormondroyd, J., and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", J. Appl. Mech. T. Am. Soc. Mech. E., 50, 9-22.
  38. Park, J. and Reed, D. (2001), "Analysis of uniformly and linearly distributed mass dampers under harmonic and earthquake excitation", Eng. Struct., 23(7), 802-814. https://doi.org/10.1016/S0141-0296(00)00095-X
  39. Sgobba, S. and Marano, G.C. (2010), "Optimum design of linear tuned mass dampers for structures with nonlinear behavior", Mech. Syst. Signal Pr., 24(6), 1739-1755. https://doi.org/10.1016/j.ymssp.2010.01.009
  40. Shi, W., Shan, J. and Lu, X. (2012), "Modal identification of Shanghai World Financial Center both from free and ambient vibration response", Eng. Struct., 36, 14-26. https://doi.org/10.1016/j.engstruct.2011.11.025
  41. Steinbuch, R. (2011), "Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers", J. Bionic Eng., 8(3), 335-344. https://doi.org/10.1016/S1672-6529(11)60036-X
  42. Tigli, O.F. (2012), "Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads", J. Sound Vib., 331(13), 3035-3049. https://doi.org/10.1016/j.jsv.2012.02.017
  43. Ueng, J.M., Lin, C.C. and Wang, J.F. (2008), "Practical design issues of tuned mass dampers for torsionally coupled buildings under earthquake loadings", Struct. Des. Tall Buil., 17(1), 133-165. https://doi.org/10.1002/tal.336
  44. Van Overschee, P. and De Moor, B. (2011), Subspace Identification for Linear Systems: Theory-Implementation-Applications, Springer, New York, NY, USA.
  45. Viguie, R. and Kerschen, G. (2009), "Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology", J. Sound Vib., 326(3-5), 780-793. https://doi.org/10.1016/j.jsv.2009.05.023
  46. Viguie R. and Kerschen, G. (2010), "On the functional form of a nonlinear vibration absorber", J. Sound Vib., 329(25), 5225-5232. https://doi.org/10.1016/j.jsv.2010.07.004
  47. Villaverde, R. (1985), "Reduction seismic response with heavily-damped vibration absorbers", Earthq. Eng. Struct. D., 13(1), 33-42. https://doi.org/10.1002/eqe.4290130105
  48. Wang J.F. and Lin, C.C. (2005), "Seismic performance of multiple tuned mass dampers for soil-irregular building interaction system", Int. J. Solids Struct., 42, 5536-5554. https://doi.org/10.1016/j.ijsolstr.2005.02.042
  49. Wang, J.F., Lin, C.C. and Lian, C.H. (2009). "Two-stage optimum design of tuned mass dampers with consideration of stroke", Struct. Control Health., 16(1), 55-72. https://doi.org/10.1002/stc.312
  50. Wang, M., Zan, T., Yang, Y. and Fei, R. (2010), "Design and implementation of nonlinear TMD for chatter suppression: An application in turning processes", Int. J. Mach. Tool. Manu., 50(5), 474-479. https://doi.org/10.1016/j.ijmachtools.2010.01.004
  51. Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. D., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304
  52. Weber, B. and Feltrin, G. (2010), "Assessment of long-term behavior of tuned mass dampers by system identification", Eng. Struct., 32(11), 3670-3682. https://doi.org/10.1016/j.engstruct.2010.08.011
  53. Wirsching, P.H. and Campbell, G.W. (1973), "Minimal structural response under random excitation using the vibration absorber", Earthq. Eng. Struct. D., 2(4), 303-312. https://doi.org/10.1002/eqe.4290020402
  54. Xu, K. and Igusa, T. (1992), "Dynamic characteristics of multiple substructures with closely spaced frequencies", Earthq. Eng. Struct. D., 21(12), 1059-1070. https://doi.org/10.1002/eqe.4290211203
  55. Yu, H., Gillot, F. and Ichchou, M. (2013), "Reliability based robust design optimization for tuned mass damper in passive vibration control of deterministic/uncertain structures", J. Sound Vib., 332(9), 2222-2238. https://doi.org/10.1016/j.jsv.2012.12.014
  56. Zilletti, M., Elliott, S.J. and Rustighi, E. (2012), "Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation", J. Sound Vib., 331(18), 4093-4100. https://doi.org/10.1016/j.jsv.2012.04.023

Cited by

  1. Parameter identification for active mass damper controlled systems vol.744, 2016, https://doi.org/10.1088/1742-6596/744/1/012166
  2. Optimum Tuning of Passive Tuned Mass Dampers for the Mitigation of Pulse-Like Responses vol.140, pp.6, 2018, https://doi.org/10.1115/1.4040475
  3. The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting vol.19, pp.6, 2017, https://doi.org/10.12989/sss.2017.19.6.665
  4. Self-control of high rise building L-shape in plan considering soil structure interaction vol.6, pp.3, 2015, https://doi.org/10.12989/csm.2017.6.3.229
  5. A state space technique for modal identification of coupled structure-tuned mass damper systems from vibration measurement vol.22, pp.9, 2019, https://doi.org/10.1177/1369433219829807
  6. On the Improvement of Vibration Mitigation and Energy Harvesting Using Electromagnetic Vibration Absorber-Inerter: Exact H2 Optimization vol.141, pp.6, 2015, https://doi.org/10.1115/1.4044303
  7. Semi-active eddy current pendulum tuned mass damper with variable frequency and damping vol.25, pp.1, 2015, https://doi.org/10.12989/sss.2020.25.1.065