DOI QR코드

DOI QR Code

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz (Department of Building, Civil, and Environment Engineering, Concordia University) ;
  • Bagchi, Ashutosh (Department of Building, Civil, and Environment Engineering, Concordia University) ;
  • Sedaghati, Ramin (Department of Mechanical and Industrial Engineering, Concordia University)
  • Received : 2013.12.13
  • Accepted : 2015.03.01
  • Published : 2015.11.25

Abstract

While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

Keywords

Acknowledgement

Supported by : Natural Sciences and Engineering Research Council of Canada (NSERC)

References

  1. Abe, M. and Fujino, Y. (1999), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. D., 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802
  2. Abe, M. and Igusa, T. (1996), "Semi-active dynamic vibration absorbers for controlling transient response", J. Sound Vib., 198(5), 547-569. https://doi.org/10.1006/jsvi.1996.0588
  3. Aldemir, U. (2003), "Optimal control of structures with semi-active tuned mass dampers", J. Sound Vib., 266(4), 847-874. https://doi.org/10.1016/S0022-460X(03)00191-3
  4. Amini, F. and Doroudi, R. (2010), "Control of a building complex with magneto-rheological dampers and tuned mass damper", Struct. Eng. Mech., 36(2), 181-195. https://doi.org/10.12989/sem.2010.36.2.181
  5. Arrigan, J., Huang, C., Staino, A., Basu, B. and Nagarajaiah, S. (2014), "A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades", Smart Struct. Syst., 13(2), 177-201. https://doi.org/10.12989/sss.2014.13.2.177
  6. Cheng, F.Y., Jiang, H. and Lou, K. (2008), Smart Structures: Innovative Systems for Seismic Response Control, CRC Press, U.S.A.
  7. CAN/CSA-S16-09(2009), Limit States Design of Steel Structures, Canadian Standards Association.
  8. Chey, M., Chase, J.G., Mander, J.B. and Carr, A.J. (2010), "Semi-active tuned mass damper building systems: Design", Earthq. Eng. Struct. D., 39(2), 119-139. https://doi.org/10.1002/eqe.934
  9. CISC, Handbook of Steel Construction, Tenth Edition (2011), Canadian Institute Of Steel Construction.
  10. Chung, P.Y. Lin, L.L. and Loh, C.H. (2005), "Semi-active control of building structures with semi-active tuned mass damper", Comput.-Aided Civil Infrastruct. E., 20(1), 35-51. https://doi.org/10.1111/j.1467-8667.2005.00375.x
  11. El Kafrawy, O. Bagchi, A. and Humar, J. (2011), "Seismic performance of concrete moment resisting frame buildings in Canada", Struct. Eng. Mech., 37(2), 233-251. https://doi.org/10.12989/sem.2011.37.2.233
  12. Esteki, K., Bagchi, A. and Sedaghati, R. (2015), "Application of a semi-active tuned mass damper in controlling the seismic response of a building", Proceedings of the 11th Canadian Conference in Earthquake Engineering (11 CCEE), Victoria, B.C.
  13. Esteki, K., Bagchi, A. and Sedaghati.R. (2014), "Dynamic analysis of electro-and magneto-rheological fluid dampers using duct flow models", Smart Mater. Struct., 23, 035016 (11pp), DOI:10.1088/0964-1726/23/3/035016.
  14. Esteki, K., Bagchi, A. and Sedaghati, R. (2011), "A new phenomenological model for random loading of MR/ER damper", Proceedings of the 2nd International Engineering Mechanics and Materials Specialty Conference, Annual Conference of the Canadian Society of Civil Engineering, Ottawa, Canada.
  15. CSI (2014), ETABS-Integrated Analysis, Design and Drafting of Building Systems; Computers and Structures Inc. (CSI) Berkeley, CA 94704 USA.
  16. Ghaffarzadeh, H. (2013), "Semi-Active structural fuzzy Control with MR dampers subjected to near-fault ground motions having forward directivity and fling step", Smart Struct. Syst., 12(6), 595-617. https://doi.org/10.12989/sss.2013.12.6.595
  17. Hoang, N., Fujino, P. and Warnitchai, P. (2008), "Optimal tuned mass damper for seismic applications and practical design formulas", Eng. Struct., 30(3), 707-715. https://doi.org/10.1016/j.engstruct.2007.05.007
  18. Hrovat, D., Barak, P. and Rabins, M. (1983), "Semi-active versus passive or active tuned mass dampers for structural control", J. Eng. Mech.-ASCE, 109(3), 691-705. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(691)
  19. Jangid, R.S. (1995), "Dynamic characteristics of structures with multiple tuned mass dampers", Struct. Eng. Mech., 3(5), 497-509. https://doi.org/10.12989/sem.1995.3.5.497
  20. Ji, H.R., Moon, Y.J., Kim, C.H. and Lee, I.W. (2005), "Structural vibration control using semi-active tuned mass damper", Proceedings of the 18th KKCNN Symposium on Civil Engineering-KAIST6, Taiwan.,
  21. Jung, H.J., Spencer, B.F., Ni, Y.Q. and Lee, I.W. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493
  22. Koo, J. H. (2003), Using magneto-rheological dampers in semi-active tuned vibration absorbers to control structural vibrations, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Virginia, U.S.A.
  23. Liedes, T. (2010), Improving the performance of the semi-active tuned mass damper, Ph.D. Dissertation, University of Oulu, Oulu, Finland.
  24. Marano, G.C. and Greco, R. (2010), "Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation", J, Vib. Control, 17(5), 679-688. https://doi.org/10.1177/1077546310365988
  25. MATLAB (R2011a), MathWorks Inc, Massachusetts, U.S.A.
  26. NBCC (2010), National Building Code of Canada, National Research Council, Ottawa, Canada.
  27. Ogata, K. (2010), Modern Control Engineering, International Edition 5th Ed., Pearson.
  28. Ormondroyd, J. and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", J. Appl. Mech.-ASME, 50, 9-22.
  29. Pinkaew, T. and Fujino, Y. (2001), "Effectiveness of semi-active tuned mass dampers under harmonic excitation", Eng. Struct., 23(7), 850-856. https://doi.org/10.1016/S0141-0296(00)00091-2
  30. Rana, R. and Soong, T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3
  31. Runlin, Y., Xiyuan, Z. and Xihui, L. (2002), "Seismic structural control using semi-active tuned mass dampers", Earthq. Eng. Eng. Vib., 1(1), 111-118. https://doi.org/10.1007/s11803-002-0014-0
  32. Sadek, F., Mohraz, B., Taylor, A. and Chung, R. (1997), "A method of estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Struct. D., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
  33. Setareh, M. (2001), "Application of semi-active tuned mass dampers to base-excited systems", Earthq. Eng. Struct. D., 30(3), 449-462. https://doi.org/10.1002/eqe.19
  34. Mathworks (2011a), Matlab-R2011a, The MathWorks, Inc., Natick, Massachusetts, United States.
  35. Mathworks (2011b), Simulink-R2011a,The MathWorks, Inc., Natick, Massachusetts, United States.
  36. Sadek, F., Mohraz, B., Taylor, A. and Chung, R. (1997), "A method of estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Struct. D., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
  37. PEER (2013), The Pacific Earthquake Engineering Research Center, Ground motion database, http://peer.berkeley.edu/
  38. Watakabe, M., Tohdo, M., Chiba, O., Izumi, N., Ebisawa, H. and Fujita, T. (2001), "Response control performance of a hybrid mass damper applied to a tall building", Earthq. Eng. Struct. D., 30(11), 1655-1676. https://doi.org/10.1002/eqe.86
  39. Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. D., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304
  40. Yang, F., Esmailzadeh, E. and Sedaghati, R. (2010), "Optimal vibration suppression of structures under random base excitation using semi-active mass damper", J. Vib. Acoust., 132( 4), 041002 (10pp). https://doi.org/10.1115/1.4000969
  41. Yang, G., Spencer, B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9
  42. Ying, Z.G., Ni, Y.Q. and Ko, M. (2009), "A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers", Smart Struct. Syst., 5(1), 69-79. https://doi.org/10.12989/sss.2009.5.1.069
  43. Yousuf, M. and Bagchi, A. (2010), "Seismic performance of a twenty storey steel frame building in Canada", J. Struct. Des. Tall Spec. Build., 19, 901-921. https://doi.org/10.1002/tal.517

Cited by

  1. An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.093
  2. Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.1005
  3. Exploring the effects of tuned mass dampers on the seismic performance of structures with nonlinear base isolation systems vol.12, pp.3, 2015, https://doi.org/10.12989/eas.2017.12.3.285
  4. Analog active valve control design for non-linear semi-active resetable devices vol.19, pp.5, 2015, https://doi.org/10.12989/sss.2017.19.5.487
  5. Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames vol.64, pp.3, 2017, https://doi.org/10.12989/sem.2017.64.3.301
  6. Development of a Frequency-Adjustable Tuned Mass Damper (FATMD) for Structural Vibration Control vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/9605028