Acknowledgement
Supported by : National Science Council of Republic of China
References
- Arefi, M. (2014), "Generalized shear deformation theory for the thermo elastic analyses of the functionally graded cylindrical shells", Struct. Eng. Mech., 50(3), 403-417. https://doi.org/10.12989/sem.2014.50.3.403
- Arefi, M., Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
- Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electric loads in the magnetic field", Smart Struct. Syst., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
- Ballhause, D., D'Ottavio, M., Kroplin, B. and Carrera, E. (2005), "A unified formulation to assess multilayered theories for piezoelectric plates", Comput. Struct., 83(15-16), 1217-1235. https://doi.org/10.1016/j.compstruc.2004.09.015
- Brischetto, S. and Carrera, E. (2010), "Advanced mixed theories for bending analysis of functionally graded plates", Comput. Struct. 88(23-24), 1474-1483. https://doi.org/10.1016/j.compstruc.2008.04.004
- Brischetto, S. and Carrera, E. (2009), "Refined 2D models for the analysis of functionally graded piezoelectric plates", J. Intell. Mat. Syst. Str., 20, 1783-1797. https://doi.org/10.1177/1045389X08098444
- Brischetto, S. and Carrera, E. (2012), "Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers", J. Therm. Stresses, 35(9), 766-804. https://doi.org/10.1080/01495739.2012.689232
- Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Method. E., 10(3), 215-296. https://doi.org/10.1007/BF02736224
- Carrera, E. and Boscolo, M. (2007), "Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates", Int. J. Numer. Meth. Eng., 70(10), 1135-1181. https://doi.org/10.1002/nme.1901
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490
- Carrera, E., Buttner, A. and Nali, P. (2010), "Mixed elements for the analysis of anisotropic multilayered piezoelectric plates", J. Intell. Mat. Syst. Str., 21(7), 701-717. https://doi.org/10.1177/1045389X10364864
- Kashtalyan, M. and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43. https://doi.org/10.1016/j.compstruct.2007.12.003
- Liew, K.M., He, X.Q., Ng, T.Y. and Kitipornchai, S. (2003a), "Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators", Comput. Mech., 31(3), 350-358. https://doi.org/10.1007/s00466-003-0437-0
- Liew, K.M., Sivashanker, S., He, X.Q. and Ng, T.Y. (2003b), "The modelling and design of smart structures using functionally graded materials and piezoelectric sensor/actuator patches", Smart Mater. Struct., 12(4), 647-655. https://doi.org/10.1088/0964-1726/12/4/316
- Loja, M.A.R., Mota Soares, C.M. and Barbosa, J.I. (2013), "Analysis of functionally graded sandwich plate structures with piezoelectric skins, using B-spline finite strip method", Compos. Struct., 96, 606-615. https://doi.org/10.1016/j.compstruct.2012.08.010
- Lu, P., Lee, H.P. and Lu, C. (2005), "An exact solution for functionally graded piezoelectric laminates in cylindrical bending", Int. J. Mech. Sci., 47(3), 437-438. https://doi.org/10.1016/j.ijmecsci.2005.01.012
- Lu, P., Lee, H.P. and Lu, C. (2006), "Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism", Compos. Struct., 72(3), 352-363. https://doi.org/10.1016/j.compstruct.2005.01.012
- Ootao, Y. and Ishihara, M. (2013), "Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law", Struct. Eng. Mech., 47(3), 421-442. https://doi.org/10.12989/sem.2013.47.3.421
- Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920. https://doi.org/10.1177/002199803035565
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
- Reissner, E. (1984), "On a certain mixed variational theorem and a proposed application", Int. J. Numer. Meth. Eng., 20(7), 1366-1368. https://doi.org/10.1002/nme.1620200714
- Reissner, E. (1986), "On a mixed variational theorem and on a shear deformable plate theory", Int. J. Numer. Meth. Eng., 23(2), 193-198. https://doi.org/10.1002/nme.1620230203
- Saravanos, D.A. and Heyliger, P.R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates, and shells", Appl. Mech. Rev., 52(10), 305-320. https://doi.org/10.1115/1.3098918
- Sladek, J. Sladek, V., Stanak, P. and Pan, E. (2010), "The MLPG for bending of electroelastic plates", CMES-Comput. Model. Eng. Sci., 64, 267-297.
- Sladek, J., Sladek, V., Stanak, P., Wen, P.H. and Atluri, S.N. (2012), "Laminated elastic plates with piezoelectric sensors and actuators", CMES-Comput. Model. Eng. Sci., 85, 543-572.
- Sladek, J., Sladek, V., Stanak, P., Zhang, C. and Wunshe, M. (2013), "Analysis of bending of circular piezoelectric plates with functionally graded material properties by a MLPG method", Eng. Struct., 47, 81-89. https://doi.org/10.1016/j.engstruct.2012.02.034
- Tang, Y.Y., Noor, A.K. and Xu, K. (1996), "Assessment of computational models for thermoelectroelastic multilayered plates", Comput. Struct., 61(5), 915-933. https://doi.org/10.1016/0045-7949(96)00037-5
- Tsai, Y.H. and Wu, C.P. (2008), "Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions", Int. J. Eng. Sci., 46(9), 843-857. https://doi.org/10.1016/j.ijengsci.2008.03.005
- Woodward, B. and Kashtalyan, M. (2010), "Bending response of sandwich panels with graded core: 3D elasticity analysis", Mech. Adv. Mater. Struct., 17(8), 586-594. https://doi.org/10.1080/15376494.2010.517728
- Wu, C.P. and Chang, Y.T. (2012), "A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer", Compos. Part B: Eng., 43(8), 3318-3333. https://doi.org/10.1016/j.compositesb.2012.01.084
- Wu, C.P. and Li, H.Y. (2010a), "The RMVT-and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates", Compos. Struct., 92(10), 2476-2496. https://doi.org/10.1016/j.compstruct.2010.03.001
- Wu, C.P. and Li, H.Y. (2010b), "RMVT-and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates", CMC-Comput. Mater. Continua, 19, 155-198.
- Wu, C.P. and Li, H.Y. (2013a), "RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions", Compos. Struct., 100, 592-608. https://doi.org/10.1016/j.compstruct.2013.01.019
- Wu, C.P. and Li, H.Y. (2013b), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34, 27-62.
- Wu, C.P. and Syu, Y.S. (2007), "Exact solutions of functionally graded piezoelectric shells under cylindrical bending", Int. J. Solids Struct., 44(20), 6450-6472. https://doi.org/10.1016/j.ijsolstr.2007.02.037
- Wu, C.P. and Tsai, Y.H. (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", Int. J. Eng. Sci., 45(9), 744-769. https://doi.org/10.1016/j.ijengsci.2007.05.002
- Wu, C.P. and Tsai, Y.H. (2009), "Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation", J. Eng. Math., 63(1), 95-119. https://doi.org/10.1007/s10665-008-9234-2
- Wu, C.P., Chiu, K.H. and Wang, Y.M. (2008), "A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells", CMC-Comput. Mater. Continua, 8, 93-132.
- Wu, C.P., Fan, T.Y. and Li, H.Y. (2014), "Reissner mixed variational theorem-based finite cylindrical layer methods for the 3D free vibration analysis of sandwich circular hollow cylinders with an embedded FGM layer", J. Vib. Control, 20(8), 1199-1223. https://doi.org/10.1177/1077546312469426
- Wu, X.H., Chen, C. and Shen, Y.P. (2002), "A high order theory for functionally graded piezoelectric shells", Int. J. Solids Struct., 39(20), 5325-5344. https://doi.org/10.1016/S0020-7683(02)00418-3
- Zhang, T., Shi, Z. (2010), "Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties", Smart Struct. Syst., 6(8), 975-989. https://doi.org/10.12989/sss.2010.6.8.975
- Zhong, Z. and Shang, E.T. (2003), "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate", Int. J. Solids Struct., 40(20), 5335-5352. https://doi.org/10.1016/S0020-7683(03)00288-9
- Zhong, Z. and Yu, T. (2006), "Vibration of a simply supported functionally graded piezoelectric rectangular plate", Smart Mater. Struct., 15(5), 1404-1412. https://doi.org/10.1088/0964-1726/15/5/029
Cited by
- A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells vol.147, 2016, https://doi.org/10.1016/j.compstruct.2016.03.031
- Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.155
- Buckling delamination of the PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface cracks vol.19, pp.2, 2015, https://doi.org/10.12989/sss.2017.19.2.163
- Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects vol.22, pp.2, 2015, https://doi.org/10.12989/sss.2018.22.2.161
- Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate vol.23, pp.1, 2019, https://doi.org/10.12989/sss.2019.23.1.031