DOI QR코드

DOI QR Code

Coupled electro-elastic analysis of functionally graded piezoelectric material plates

  • Wu, Chih-Ping (Department of Civil Engineering, National Cheng Kung University) ;
  • Ding, Shuang (Department of Civil Engineering, National Cheng Kung University)
  • Received : 2014.08.05
  • Accepted : 2015.02.28
  • Published : 2015.11.25

Abstract

A unified formulation of finite layer methods (FLMs), based on the Reissner mixed variational theorem (RMVT), is developed for the three-dimensional (3D) coupled electro-elastic analysis of simply-supported, functionally graded piezoelectric material (FGPM) plates with open- and closed-circuit surface conditions and under electro-mechanical loads. In this formulation, the material properties of the plate are assumed to obey an exponent-law varying exponentially through the thickness coordinate, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the primary field variables of each individual layer, respectively, such as the elastic displacement, transverse shear and normal stress, electric potential, and normal electric displacement components. The relevant orders used for expanding these variables in the thickness coordinate can be freely chosen as the linear, quadratic and cubic orders. Four different mechanical/electrical loading conditions applied on the top and bottom surfaces of the plate are considered, and the corresponding coupled electro-elastic analysis of the loaded FGPM plates is undertaken. The accuracy and convergence rate of the RMVT-based FLMs are assessed by comparing their solutions with the exact 3D piezoelectricity ones available in the literature.

Keywords

Acknowledgement

Supported by : National Science Council of Republic of China

References

  1. Arefi, M. (2014), "Generalized shear deformation theory for the thermo elastic analyses of the functionally graded cylindrical shells", Struct. Eng. Mech., 50(3), 403-417. https://doi.org/10.12989/sem.2014.50.3.403
  2. Arefi, M., Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  3. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electric loads in the magnetic field", Smart Struct. Syst., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
  4. Ballhause, D., D'Ottavio, M., Kroplin, B. and Carrera, E. (2005), "A unified formulation to assess multilayered theories for piezoelectric plates", Comput. Struct., 83(15-16), 1217-1235. https://doi.org/10.1016/j.compstruc.2004.09.015
  5. Brischetto, S. and Carrera, E. (2010), "Advanced mixed theories for bending analysis of functionally graded plates", Comput. Struct. 88(23-24), 1474-1483. https://doi.org/10.1016/j.compstruc.2008.04.004
  6. Brischetto, S. and Carrera, E. (2009), "Refined 2D models for the analysis of functionally graded piezoelectric plates", J. Intell. Mat. Syst. Str., 20, 1783-1797. https://doi.org/10.1177/1045389X08098444
  7. Brischetto, S. and Carrera, E. (2012), "Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers", J. Therm. Stresses, 35(9), 766-804. https://doi.org/10.1080/01495739.2012.689232
  8. Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Method. E., 10(3), 215-296. https://doi.org/10.1007/BF02736224
  9. Carrera, E. and Boscolo, M. (2007), "Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates", Int. J. Numer. Meth. Eng., 70(10), 1135-1181. https://doi.org/10.1002/nme.1901
  10. Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490
  11. Carrera, E., Buttner, A. and Nali, P. (2010), "Mixed elements for the analysis of anisotropic multilayered piezoelectric plates", J. Intell. Mat. Syst. Str., 21(7), 701-717. https://doi.org/10.1177/1045389X10364864
  12. Kashtalyan, M. and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43. https://doi.org/10.1016/j.compstruct.2007.12.003
  13. Liew, K.M., He, X.Q., Ng, T.Y. and Kitipornchai, S. (2003a), "Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators", Comput. Mech., 31(3), 350-358. https://doi.org/10.1007/s00466-003-0437-0
  14. Liew, K.M., Sivashanker, S., He, X.Q. and Ng, T.Y. (2003b), "The modelling and design of smart structures using functionally graded materials and piezoelectric sensor/actuator patches", Smart Mater. Struct., 12(4), 647-655. https://doi.org/10.1088/0964-1726/12/4/316
  15. Loja, M.A.R., Mota Soares, C.M. and Barbosa, J.I. (2013), "Analysis of functionally graded sandwich plate structures with piezoelectric skins, using B-spline finite strip method", Compos. Struct., 96, 606-615. https://doi.org/10.1016/j.compstruct.2012.08.010
  16. Lu, P., Lee, H.P. and Lu, C. (2005), "An exact solution for functionally graded piezoelectric laminates in cylindrical bending", Int. J. Mech. Sci., 47(3), 437-438. https://doi.org/10.1016/j.ijmecsci.2005.01.012
  17. Lu, P., Lee, H.P. and Lu, C. (2006), "Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism", Compos. Struct., 72(3), 352-363. https://doi.org/10.1016/j.compstruct.2005.01.012
  18. Ootao, Y. and Ishihara, M. (2013), "Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law", Struct. Eng. Mech., 47(3), 421-442. https://doi.org/10.12989/sem.2013.47.3.421
  19. Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920. https://doi.org/10.1177/002199803035565
  20. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
  21. Reissner, E. (1984), "On a certain mixed variational theorem and a proposed application", Int. J. Numer. Meth. Eng., 20(7), 1366-1368. https://doi.org/10.1002/nme.1620200714
  22. Reissner, E. (1986), "On a mixed variational theorem and on a shear deformable plate theory", Int. J. Numer. Meth. Eng., 23(2), 193-198. https://doi.org/10.1002/nme.1620230203
  23. Saravanos, D.A. and Heyliger, P.R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates, and shells", Appl. Mech. Rev., 52(10), 305-320. https://doi.org/10.1115/1.3098918
  24. Sladek, J. Sladek, V., Stanak, P. and Pan, E. (2010), "The MLPG for bending of electroelastic plates", CMES-Comput. Model. Eng. Sci., 64, 267-297.
  25. Sladek, J., Sladek, V., Stanak, P., Wen, P.H. and Atluri, S.N. (2012), "Laminated elastic plates with piezoelectric sensors and actuators", CMES-Comput. Model. Eng. Sci., 85, 543-572.
  26. Sladek, J., Sladek, V., Stanak, P., Zhang, C. and Wunshe, M. (2013), "Analysis of bending of circular piezoelectric plates with functionally graded material properties by a MLPG method", Eng. Struct., 47, 81-89. https://doi.org/10.1016/j.engstruct.2012.02.034
  27. Tang, Y.Y., Noor, A.K. and Xu, K. (1996), "Assessment of computational models for thermoelectroelastic multilayered plates", Comput. Struct., 61(5), 915-933. https://doi.org/10.1016/0045-7949(96)00037-5
  28. Tsai, Y.H. and Wu, C.P. (2008), "Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions", Int. J. Eng. Sci., 46(9), 843-857. https://doi.org/10.1016/j.ijengsci.2008.03.005
  29. Woodward, B. and Kashtalyan, M. (2010), "Bending response of sandwich panels with graded core: 3D elasticity analysis", Mech. Adv. Mater. Struct., 17(8), 586-594. https://doi.org/10.1080/15376494.2010.517728
  30. Wu, C.P. and Chang, Y.T. (2012), "A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer", Compos. Part B: Eng., 43(8), 3318-3333. https://doi.org/10.1016/j.compositesb.2012.01.084
  31. Wu, C.P. and Li, H.Y. (2010a), "The RMVT-and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates", Compos. Struct., 92(10), 2476-2496. https://doi.org/10.1016/j.compstruct.2010.03.001
  32. Wu, C.P. and Li, H.Y. (2010b), "RMVT-and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates", CMC-Comput. Mater. Continua, 19, 155-198.
  33. Wu, C.P. and Li, H.Y. (2013a), "RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions", Compos. Struct., 100, 592-608. https://doi.org/10.1016/j.compstruct.2013.01.019
  34. Wu, C.P. and Li, H.Y. (2013b), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34, 27-62.
  35. Wu, C.P. and Syu, Y.S. (2007), "Exact solutions of functionally graded piezoelectric shells under cylindrical bending", Int. J. Solids Struct., 44(20), 6450-6472. https://doi.org/10.1016/j.ijsolstr.2007.02.037
  36. Wu, C.P. and Tsai, Y.H. (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", Int. J. Eng. Sci., 45(9), 744-769. https://doi.org/10.1016/j.ijengsci.2007.05.002
  37. Wu, C.P. and Tsai, Y.H. (2009), "Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation", J. Eng. Math., 63(1), 95-119. https://doi.org/10.1007/s10665-008-9234-2
  38. Wu, C.P., Chiu, K.H. and Wang, Y.M. (2008), "A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells", CMC-Comput. Mater. Continua, 8, 93-132.
  39. Wu, C.P., Fan, T.Y. and Li, H.Y. (2014), "Reissner mixed variational theorem-based finite cylindrical layer methods for the 3D free vibration analysis of sandwich circular hollow cylinders with an embedded FGM layer", J. Vib. Control, 20(8), 1199-1223. https://doi.org/10.1177/1077546312469426
  40. Wu, X.H., Chen, C. and Shen, Y.P. (2002), "A high order theory for functionally graded piezoelectric shells", Int. J. Solids Struct., 39(20), 5325-5344. https://doi.org/10.1016/S0020-7683(02)00418-3
  41. Zhang, T., Shi, Z. (2010), "Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties", Smart Struct. Syst., 6(8), 975-989. https://doi.org/10.12989/sss.2010.6.8.975
  42. Zhong, Z. and Shang, E.T. (2003), "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate", Int. J. Solids Struct., 40(20), 5335-5352. https://doi.org/10.1016/S0020-7683(03)00288-9
  43. Zhong, Z. and Yu, T. (2006), "Vibration of a simply supported functionally graded piezoelectric rectangular plate", Smart Mater. Struct., 15(5), 1404-1412. https://doi.org/10.1088/0964-1726/15/5/029

Cited by

  1. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells vol.147, 2016, https://doi.org/10.1016/j.compstruct.2016.03.031
  2. Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.155
  3. Buckling delamination of the PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface cracks vol.19, pp.2, 2015, https://doi.org/10.12989/sss.2017.19.2.163
  4. Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects vol.22, pp.2, 2015, https://doi.org/10.12989/sss.2018.22.2.161
  5. Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate vol.23, pp.1, 2019, https://doi.org/10.12989/sss.2019.23.1.031