Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Ashida, F. and Tauchert, T.R. (1997), "Temperature determination for a contacting body based on an inverse piezothermoelastic problem", Int. J. Solids Struct., 34(20), 2549-2561. https://doi.org/10.1016/S0020-7683(96)00135-7
- Ashida, F. and Tauchert, T.R. (1998), "Transient response of a piezothermoelastic circular disk under axisymmetric heating", Acta Mech., 128(1-2), 1-14. https://doi.org/10.1007/BF01463155
- Chen, Y. and Shi, Z.F. (2005a), "Double-layered piezothermoelastic hollow cylinder under thermal loading", Key Eng Mater., 302, 684-692.
- Chen, Y. and Shi, Z.F. (2005b), "Exact solutions of functionally gradient piezothermoelastic cantilevers and parameter identification", J. Intel. Mat. Syst. Str., 16(6), 531-539. https://doi.org/10.1177/1045389X05053208
- Erturk, A. (2011), "Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations", J. Intel. Mat. Syst. Str., 22(17), 1959-1973. https://doi.org/10.1177/1045389X11420593
- Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater Struct., 18(2), 25009. https://doi.org/10.1088/0964-1726/18/2/025009
- Gehring, G.A., Cooke, M.D., Gregory, I.S., Karl, W.J. and Watts, R. (2000), "Cantilever unified theory and optimization for sensors and actuators", Smart Mater Struct., 9(6), 918-931. https://doi.org/10.1088/0964-1726/9/6/324
- Hauke, T., Kouvatov, A., Steinhausen, R., Seifert, W., Beige, H. and Theo, H. et al. (2000), "Bending behavior of functionally gradient materials", Ferroelectrics, 238(1), 195-202. https://doi.org/10.1080/00150190008008784
- Kapuria, S. and Achary, G. (2005), "A coupled consistent third-order theory for hybrid piezoelectric plates", Compos Struct., 70(1), 120-133. https://doi.org/10.1016/j.compstruct.2004.08.018
- Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2006), "Assessment of coupled 1D models for hybrid piezoelectric layered functionally graded beams", Compos Struct., 72(4), 455-468. https://doi.org/10.1016/j.compstruct.2005.01.015
- Malgaca, L. and Karaguelle, H. (2009), "Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation", Smart Struct. Syst., 5(1), 55-68. https://doi.org/10.12989/sss.2009.5.1.055
- Peng, W.Y., Xiao, Z.X. and Farmer, K.R. (2003), "Optimization of thermally actuated bimorph cantilevers for maximum deflection", Nanotechnology Conference and Trade Show (Nanotech 2003), San Francisco, USA, February.
- Ray, M.C. and Reddy, J.N. (2005), "Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites", Compos Sci. Technol., 65(7-8), 1226-1236. https://doi.org/10.1016/j.compscitech.2004.12.027
- Schoeftner, J. and Irschik, H. (2011), "Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance", Smart Struct. Syst., 7(5), 417-432. https://doi.org/10.12989/sss.2011.7.5.417
- Shi, Z.F. (2002), "General solution of a density functionally gradient piezoelectric cantilever and its applications", Smart Mater Struct., 11(1), 122-129. https://doi.org/10.1088/0964-1726/11/1/314
- Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart Mater Struct., 14(4), 835-842. https://doi.org/10.1088/0964-1726/14/4/043
- Smits, J.G. and Choi, W. (1991), "The constituent equations of piezoelectric heterogeneous bimorphs", IEEE T. Ultrason Ferr., 38(3), 256-270. https://doi.org/10.1109/58.79611
- Smits, J.G. and Choi, W. (1993), "Equations of state including the thermal domain of piezoelectric and pyroelectric heterogeneous bimorphs", Ferroelectrics, 141(1), 271-276. https://doi.org/10.1080/00150199308223454
- Smits, J.G., Dalke, S.I. and Cooney, T.K. (1991), "The constituent equations of piezoelectric bimorphs", Sensor Actuat. A-Phys., 28(1), 41-61. https://doi.org/10.1016/0924-4247(91)80007-C
- Tzou, H.S. and Bao, Y. (1995), "A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator applications", J. Sound Vib., 184(3), 453-473. https://doi.org/10.1006/jsvi.1995.0328
- Tzou, H.S. and Howard, R.V. (1994), "A piezothermoelastic thin shell theory applied to active structures", J. Vib. Acoust., 116(3), 295-302. https://doi.org/10.1115/1.2930428
- Xiang, H.J. and Shi, Z.F. (2008), "Static analysis for multi-layered piezoelectric cantilevers", Int. J. Solids Struct., 45(1), 113-128. https://doi.org/10.1016/j.ijsolstr.2007.07.022
- Xiang, H.J. and Shi, Z.F. (2009), "Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load", Eur. J.Mech. A-Solid., 28(2), 338-346. https://doi.org/10.1016/j.euromechsol.2008.06.007
- Zhang, T.T. and Shi, Z.F. (2006), "Two-dimensional exact analysis for piezoelectric curved actuators", J Micromech. Microeng., 16(3), 640-647. https://doi.org/10.1088/0960-1317/16/3/020
Cited by
- Analytical study of influence of boundary conditions on acoustic power transfer through an elastic barrier vol.28, pp.2, 2019, https://doi.org/10.1088/1361-665x/aaeb73
- A novel method to monitor soft soil strength development in artificial ground freezing projects based on electromechanical impedance technique: Theoretical modeling and experimental validation vol.31, pp.12, 2015, https://doi.org/10.1177/1045389x20919973
- Measurement and evaluation of soft soil strength development during freeze-thaw process based on electromechanical impedance technique vol.32, pp.2, 2021, https://doi.org/10.1088/1361-6501/abb7a1
- Modifications on F2MC tubes as passive tunable vibration absorbers vol.28, pp.2, 2015, https://doi.org/10.12989/sss.2021.28.2.153