Acknowledgement
Supported by : National Science Foundation (NSF)
References
- Aly, A.M. (2013), "Pressure integration technique for predicting wind-induced response in high-rise buildings", Alexandria Eng. J., 52(4), 717-731. https://doi.org/10.1016/j.aej.2013.08.006
- Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W. et al. (2006), The landscape of parallel computing research: A view from Berkeley, Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, California, USA.
- Barbato, M., Petrini, F., Unnikrishnan, V.U. and Ciampoli, M. (2013), "Performance-Based Hurricane Engineering (PBHE) framework", Struct. Saf., 45, 24-35. https://doi.org/10.1016/j.strusafe.2013.07.002
- Bauer, B.A., Davis, J.E., Taufer, M. and Patel, S. (2011), "Molecular dynamics simulations of aqueous ions at the liquid-vapor interface accelerated using graphics processors", J. Comput. Chem., 32(3), 375-385. https://doi.org/10.1002/jcc.21578
- Bernardini, E., Spence, S.M. and Gioffre, M. (2012), "Effects of the aerodynamic uncertainties in HFFB loading schemes on the response of tall buildings with coupled dynamic modes", Eng. Struct., 42, 329-341. https://doi.org/10.1016/j.engstruct.2012.04.030
- Cecka, C., Lew, A.J. and Darve, E. (2011), "Assembly of finite element methods on graphics processors", Int. J. Numer. Meth. Eng., 85(5), 640-669. https://doi.org/10.1002/nme.2989
- Colella, P. (2004), "Defining software requirements for scientific computing", Slide of 2004 presentation included in David Patterson's 2005 talk.
- Corrigan, A., Camelli, F.F., Lohner, R. and Wallin, J. (2011), "Running unstructured grid-based CFD solvers on modern graphics hardware", Int. J. Numer. Meth. Fl., 66(2), 221-229. https://doi.org/10.1002/fld.2254
- Cui, W. and Caracoglia, L. (2015), "Simulation and analysis of intervention costs due to wind-induced damage on tall buildings", Eng. Struct., 87, 183-197. https://doi.org/10.1016/j.engstruct.2015.01.001
- Culler, D.E., Singh, J.P. and Gupta, A. (1999), Parallel computer architecture: a hardware/software approach, Gulf Professional Publishing, Houston, Texas, USA.
- Dziekonski, A., Sypek, P., Lamecki, A. and Mrozowski, M. (2013), "Generation of large finite-element matrices on multiple graphics processors", Int. J. Numer. Meth. Eng., 94(2), 204-220. https://doi.org/10.1002/nme.4452
- Faires, D. and Burden, R. (2012), Numerical Methods, Cengage Learning, Boston, MA, USA.
- Feng, R., Yan, G. and Ge, J. (2012), "Effects of high modes on the wind-induced response of super high-rise buildings", Earthq. Eng. Eng. Vib., 11(3), 427-434. https://doi.org/10.1007/s11803-012-0132-2
- Foundation, F.S. (2014), GNU Scientific Library, URL: http://www.gnu.org/software/gsl/
- Gaurav, and Wojtkiewicz, S.F. (2011), "Use of GPU computing for uncertainty quantification in computational mechanics: A case study", Scientific Programming, 19(4), 199-212 https://doi.org/10.1155/2011/730213
- Georgescu, S., Chow, P. and Okuda, H. (2013), "GPU acceleration for FEM-based structural analysis", Arch. Comput. Method. E., 20(2), 111-121. https://doi.org/10.1007/s11831-013-9082-8
- Grigoriu, M. (2002), Stochastic calculus: applications in science and engineering, Birkhauser, Boston, MA, USA.
- Huang, S., Li, Q. and Wu, J. (2010), "A general inflow turbulence generator for large eddy simulation", J. Wind Eng. Ind. Aerod., 98(10-11), 600-617. https://doi.org/10.1016/j.jweia.2010.06.002
- Iannuzzi, A. and Spinelli, P. (1987), "Artificial wind generation and structural response", J. Struct. Eng. - ASCE, 113(12), 2382-2398. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2382)
- Intel (2014a), Intel Xeon Processor E5-2670 Specifications, URL: http://ark.intel.com/products/64595
- Intel (2014b), Intel Xeon Processor E7-8893 v2 Specifications, URL: http://ark.intel.com/products/75260
- Kareem, A. (1981), "Wind-excited response of buildings in higher modes", J. Struct. Div. - ASCE, 107(4), 701-706.
- Kepner, J. (2009), Parallel MATLAB for multicore and multinode computers, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, USA.
- Klockner, A., Warburton, T., Bridge, J. and Hesthaven, J.S. (2009), "Nodal discontinuous Galerkin methods on graphics processors", J. Comput. Phys., 228(21), 7863-7882. https://doi.org/10.1016/j.jcp.2009.06.041
- Krawezik, G.P. and Poole, G. (2010), "Accelerating the ANSYS direct sparse solver with GPUs", 2010 Symposium on Application Accelerators in High Performance Computing.
- Mathworks (2013), MATLAB Documents, The MathWorks Inc., Natick, Massachusetts, USA.
- Melbourne, W.H. (1980), "Comparison of measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6(1), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9
- Melbourne, W. and Cheung, J. (1988), "Designing for serviceable accelerations in tall buildings", Proceedings of the 4th International Conference on Tall Buildings, Hong Kong and Shanghai.
- Moore, G. (1998), "Cramming More Components Onto Integrated Circuits", Proc. IEEE, 86(1), 82-85. https://doi.org/10.1109/JPROC.1998.658762
- Nvidia (2013a), TESLA K20 GPU active accelerator, URL: http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Active-BD-06499-001-v04.pdf, Santa Clara, California: The Nvidia Inc.
- Nvidia (2013b), TESLA K40 GPU active accelerator, URL:http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf , Santa Clara, California: The Nvidia Inc.
- Nvidia (2014), CUDA C programming guide, The Nvidia Inc., Santa Clara, California, USA.
- Piccardo, G. and Solari, G. (2000), "3D wind-excited response of slender structures: Closed-form solution", J. Struct. Eng. - ASCE, 126(8), 936-943. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(936)
- Robert, C.P. and Casella, G. (2005), Monte Carlo statistical methods, Springer, Heidelberg, Germany.
- Seo, D.W. and Caracoglia, L. (2012), "Statistical buffeting response of flexible bridges influenced by errors in aeroelastic loading estimation", J. Wind Eng. Ind. Aerod., 104, 129-140.
- Seo, D.W. and Caracoglia, L. (2013), "Estimating life-cycle monetary losses due to wind hazards: Fragility analysis of long-span bridges", Eng. Struct., 56, 1593-1606. https://doi.org/10.1016/j.engstruct.2013.07.031
- Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures: fundamentals and applications to design, John Wiley & Sons, New Jersey, USA.
- Sipser, M. (2012), Introduction to the theory of computation, Cengage Learning, Boston, MA, USA.
- Smith, M.A. and Caracoglia, L. (2011), "A Monte Carlo based method for the dynamic "fragility analysis" of tall buildings under turbulent wind loading", Eng. Struct., 33(2), 410-420. https://doi.org/10.1016/j.engstruct.2010.10.024
- Smith, M.A. (2009), A Monte Carlo based method for the dynamic performance analysis of tall buildings under turbulent wind loading, M.S. Thesis, Northeastern University, Boston, Massachusetts, USA.
- Solari, G. (1988), "Equivalent wind-spectrum technique: theory and applications", J. Struct. Eng. - ASCE, 114(6), 1303-1323. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:6(1303)
- Spence, S.M. and Gioffre, M. (2012), "Large scale reliability-based design optimization of wind excited tall buildings", Probabilist. Eng. Mech., 28, 206-215. https://doi.org/10.1016/j.probengmech.2011.08.001
- Stantchev, G., Juba, D., Dorland, W. and Varshney, A. (2009), "Using graphics processors for high-performance computation and visualization of plasma turbulence", Comput. Sci. Eng., 11(2), 52-59. https://doi.org/10.1109/MCSE.2009.42
Cited by
- An approach to enhance the performance of large-scale structural analysis on CPU-MIC heterogeneous clusters vol.29, pp.8, 2017, https://doi.org/10.1002/cpe.4033
- A dynamic analysis algorithm for RC frames using parallel GPU strategies vol.18, pp.5, 2016, https://doi.org/10.12989/cac.2016.18.5.1019
- A unified framework for performance-based wind engineering of tall buildings in hurricane-prone regions based on lifetime intervention-cost estimation vol.73, pp.None, 2015, https://doi.org/10.1016/j.strusafe.2018.02.003
- Characterization of an Equivalent Coupled Flexural-Torsional Beam Model for the Analysis of Tall Buildings under Stochastic Actions vol.146, pp.11, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0002815