DOI QR코드

DOI QR Code

IMPAIRED GLOBAL RIGHT VENTRICULAR LONGITUDINAL STRAIN PREDICTS LONG-TERM ADVERSE OUTCOMES IN PATIENTS WITH PULMONARY ARTERIAL HYPERTENSION

  • PARK, JAE-HYEONG (DEPARTMENT OF CARDIOVASCULAR MEDICINE, THE CLEVELAND CLINIC FOUNDATION) ;
  • PARK, MARGARET M. (DEPARTMENT OF CARDIOVASCULAR MEDICINE, THE CLEVELAND CLINIC FOUNDATION) ;
  • FARHA, SAMAR (PULMONARY AND CRITICAL CARE MEDICINE, THE CLEVELAND CLINIC FOUNDATION) ;
  • SHARP, JACQUELINE (DEPARTMENT OF CARDIOVASCULAR MEDICINE, THE CLEVELAND CLINIC FOUNDATION) ;
  • LUNDGRIN, ERIKA (PULMONARY AND CRITICAL CARE MEDICINE, THE CLEVELAND CLINIC FOUNDATION) ;
  • COMHAIR, SUZY (PULMONARY AND CRITICAL CARE MEDICINE, THE CLEVELAND CLINIC FOUNDATION) ;
  • TANG, WAI HONG (DEPARTMENT OF CARDIOVASCULAR MEDICINE, THE CLEVELAND CLINIC FOUNDATION) ;
  • ERZURUM, SERPIL C. (CARDIOLOGY DIVISION OF INTERNAL MEDICINE, CHUNGNAM NATIONAL UNIVERSITY, CHUNGNAM NATIONAL UNIVERSITY HOSPITAL) ;
  • THOMAS, JAMES D. (DEPARTMENT OF CARDIOVASCULAR MEDICINE, THE CLEVELAND CLINIC FOUNDATION)
  • Received : 2015.04.13
  • Accepted : 2015.05.26
  • Published : 2015.06.27

Abstract

BACKGROUND: New 2-dimensional strain echocardiography enables quantification of right ventricular (RV) mechanics by assessing global longitudinal strain of RV (GLSRV) in patients with pulmonary arterial hypertension (PAH). However, the prognostic significance of impaired GLSRV is unclear in these patients. METHODS: Comprehensive echocardiography was performed in 51 consecutive PAH patients without atrial fibrillation (40 females, $48{\pm}14years\;old$) with long-term follow-up. GLSRV was measured with off-line with velocity vector imaging (VVI, Siemens Medical System, Mountain View, CA, USA). RESULTS: GLSRV showed significant correlation with RV fractional area change (r = -0.606, p < 0.001), tricuspid annular plane systolic excursion (r = -0.579, p < 0.001), and RV Tei index (r = 0.590, p < 0.001). It showed significant correlations with pulmonary vascular resistance (r = 0.469, p = 0.001) and B-natriuretic peptide concentration (r = 0.351, p = 0.012). During a clinical followup time ($45{\pm}15months$), 20 patients experienced one or more adverse events (12 death, 2 lung transplantation, and 15 heart failure hospitalization). After multivariate analysis, age [hazard ratio (HR) = 2.343, p = 0.040] and GLSRV (HR = 2.122, p = 0.040) were associated with adverse clinical events. Age (HR = 3.200, p = 0.016) and GLSRV (HR = 2.090, p = 0.042) were also significant predictors of death. Impaired GLSRV (${\geq}-15.5%$) was associated with lower event-free survival (HR = 4.906, p = 0.001) and increased mortality (HR = 8.842, p = 0.005). CONCLUSION: GLSRV by VVI showed significant correlations with conventional echocardiographic parameters indicating RV systolic function. Lower GLSRV (${\geq}-15.5%$) was significantly associated with presence of adverse clinical events and deaths in PAH patients.

Keywords

References

  1. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009;135:794-804. https://doi.org/10.1378/chest.08-0492
  2. Sitbon O, Humbert M, Nunes H, Parent F, Garcia G, Herve P, Rainisio M, Simonneau G. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol 2002;40:780-8. https://doi.org/10.1016/S0735-1097(02)02012-0
  3. Condliffe R, Kiely DG, Coghlan JG, Gibbs JS, Wort SJ, Corris PA, Peacock AJ, Pepke-Zaba J; Adult Pulmonary Hypertension Service of the United Kingdom. Survival in pulmonary hypertension registries: the importance of incident cases. Chest 2011;139:1547-8; author reply 1548-9.
  4. D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991;115:343-9. https://doi.org/10.7326/0003-4819-115-5-343
  5. Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation 1994;89:1733-44. https://doi.org/10.1161/01.CIR.89.4.1733
  6. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713; quiz 786-8. https://doi.org/10.1016/j.echo.2010.05.010
  7. Giusca S, Dambrauskaite V, Scheurwegs C, D'hooge J, Claus P, Herbots L, Magro M, Rademakers F, Meyns B, Delcroix M, Voigt JU. Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart 2010;96:281-8. https://doi.org/10.1136/hrt.2009.171728
  8. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 2006;98:699-704. https://doi.org/10.1016/j.amjcard.2006.03.056
  9. Jamal F, Bergerot C, Argaud L, Loufouat J, Ovize M. Longitudinal strain quantitates regional right ventricular contractile function. Am J Physiol Heart Circ Physiol 2003;285:H2842-7. https://doi.org/10.1152/ajpheart.00218.2003
  10. Verhaert D, Mullens W, Borowski A, PopovicZB, Curtin RJ, Thomas JD, Tang WH. Right ventricular response to intensive medical therapy in advanced decompensated heart failure. Circ Heart Fail 2010;3:340-6. https://doi.org/10.1161/CIRCHEARTFAILURE.109.900134
  11. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 2013;6:711-21. https://doi.org/10.1161/CIRCIMAGING.113.000640
  12. Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004;43(12 Suppl S):5S-12S. https://doi.org/10.1016/j.jacc.2004.02.037
  13. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63. https://doi.org/10.1016/j.echo.2005.10.005
  14. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 2003;41:1021-7. https://doi.org/10.1016/S0735-1097(02)02973-X
  15. Park JH, Negishi K, Kwon DH, Popovic ZB, Grimm RA, Marwick TH. Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: comparison with cardiac magnetic resonance and outcome. J Cardiovasc Ultrasound 2014;22:113-20. https://doi.org/10.4250/jcu.2014.22.3.113
  16. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008;27:157-72; discussion 207-12. https://doi.org/10.1002/sim.2929
  17. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-87. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
  18. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Stoylen A, Ihlen H, Lima JA, Smiseth OA, Slordahl SA. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 2006;47:789-93. https://doi.org/10.1016/j.jacc.2005.10.040
  19. Toyoda T, Baba H, Akasaka T, Akiyama M, Neishi Y, Tomita J, Sukmawan R, Koyama Y, Watanabe N, Tamano S, Shinomura R, Komuro I, Yoshida K. Assessment of regional myocardial strain by a novel automated tracking system from digital image files. J Am Soc Echocardiogr 2004;17:1234-8. https://doi.org/10.1016/j.echo.2004.07.010
  20. Thomas JD, PopovicZB. Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol 2006;48:2012-25. https://doi.org/10.1016/j.jacc.2006.06.071
  21. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 2010;23:351-69; quiz 453-5. https://doi.org/10.1016/j.echo.2010.02.015
  22. Nahum J, Bensaid A, Dussault C, Macron L, Clemence D, Bouhemad B, Monin JL, Rande JL, Gueret P, Lim P. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imaging 2010;3:249-56. https://doi.org/10.1161/CIRCIMAGING.109.910893
  23. Puwanant S, Park M, PopovicZB, Tang WH, Farha S, George D, Sharp J, Puntawangkoon J, Loyd JE, Erzurum SC, Thomas JD. Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 2010;121:259-66. https://doi.org/10.1161/CIRCULATIONAHA.108.844340
  24. Park JH, Kusunose K, Motoki H, Kwon DH, Grimm RA, Griffin BP, Marwick TH, PopovicZB. Assessment of Right Ventricular Longitudinal Strain in Patients with Ischemic Cardiomyopathy: Head-to-Head Comparison between Two-Dimensional Speckle-Based Strain and Velocity Vector Imaging Using Volumetric Assessment by Cardiac Magnetic Resonance as a "Gold Standard". Echocardiography 2014 Sep 18 [Epub]. http://dx.doi.org/10.1111/echo.12740.
  25. Bristow MR, Zisman LS, Lowes BD, Abraham WT, Badesch DB, Groves BM, Voelkel NF, Lynch DM, Quaife RA. The pressure-overloaded right ventricle in pulmonary hypertension. Chest 1998;114(1 Suppl):101S-6S. https://doi.org/10.1378/chest.114.1_Supplement.101S
  26. Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Hsiao JF, Maalouf JF, Ammash NM, McCully RB, Miller FA, Pellikka PA, Oh JK, Kane GC. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 2011;139:1299-309. https://doi.org/10.1378/chest.10-2015
  27. Bove AA, Santamore WP. Ventricular interdependence. Prog Cardiovasc Dis 1981;23:365-88. https://doi.org/10.1016/0033-0620(81)90022-0
  28. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36. https://doi.org/10.1148/radiology.143.1.7063747

Cited by

  1. Right Ventricular Longitudinal Strain Is Depressed in a Bovine Model of Pulmonary Hypertension : vol.122, pp.5, 2015, https://doi.org/10.1213/ane.0000000000001215
  2. Right heart function deteriorates in breast cancer patients undergoing anthracycline-based chemotherapy vol.3, pp.3, 2015, https://doi.org/10.1530/erp-16-0020
  3. Assessment of right ventricular longitudinal strain by 2D speckle tracking imaging compared with RV function and hemodynamics in pulmonary hypertension vol.33, pp.11, 2015, https://doi.org/10.1007/s10554-017-1182-3
  4. Acute effect of iloprost inhalation on right atrial function and ventricular dyssynchrony in patients with pulmonary artery hypertension vol.34, pp.1, 2015, https://doi.org/10.1111/echo.13401
  5. Echocardiographic assessment of the right ventricle in the current era: Application in clinical practice vol.34, pp.12, 2015, https://doi.org/10.1111/echo.13651
  6. Assessment and Prognostic Impact of Right Ventricular Function in Patients with Pulmonary Arterial Hypertension Undergoing Pulmonary Artery Denervation: Central Role of Global Right Ventricular Longit vol.1, pp.1, 2015, https://doi.org/10.1080/24748706.2017.1315204
  7. The association between right ventricular free wall strain and exercise capacity for health check-up subjects vol.12, pp.3, 2015, https://doi.org/10.1371/journal.pone.0173307
  8. Normal references of right ventricular strain values by two-dimensional strain echocardiography according to the age and gender vol.34, pp.2, 2018, https://doi.org/10.1007/s10554-017-1217-9
  9. Right Ventricular Strain Comes of Age vol.11, pp.10, 2015, https://doi.org/10.1161/circimaging.118.008382
  10. Analysis of Biphasic Right Ventricular Outflow Doppler Waveform in Patients with Pulmonary Hypertension : Estimation of Pulmonary Vascular Resistance vol.60, pp.1, 2015, https://doi.org/10.1536/ihj.18-149
  11. Predictors of complications among patients with acute inferior and right myocardial infarction vol.8, pp.4, 2015, https://doi.org/10.4103/rcm.rcm_21_19
  12. Prognostic value of right ventricular longitudinal strain in patients with pulmonary hypertension: a systematic review and meta-analysis vol.20, pp.4, 2015, https://doi.org/10.1093/ehjci/jey120
  13. Diminished right ventricular function at diagnosis of pulmonary hypertension is associated with mortality in bronchopulmonary dysplasia vol.9, pp.3, 2015, https://doi.org/10.1177/2045894019878598
  14. Should the septum be included in the assessment of right ventricular longitudinal strain? An ultrasound two-dimensional speckle-tracking stress study vol.35, pp.10, 2015, https://doi.org/10.1007/s10554-019-01633-6
  15. Echocardiographic Indices of the Left and Right Heart in a Normal Black African Population vol.33, pp.3, 2015, https://doi.org/10.1016/j.echo.2019.10.009
  16. CMR‐based heart deformation analysis for quantification of hemodynamics and right ventricular dysfunction in patients with CTEPH vol.14, pp.3, 2015, https://doi.org/10.1111/crj.13128
  17. Right ventricular strain vol.4, pp.1, 2015, https://doi.org/10.24969/hvt.2020.187
  18. Association between right atrial area measured by echocardiography and prognosis among pulmonary arterial hypertension: a systematic review and meta-analysis vol.10, pp.9, 2015, https://doi.org/10.1136/bmjopen-2019-031316
  19. Right Ventricular Strain, Brain Natriuretic Peptide, and Mortality in Congenital Diaphragmatic Hernia vol.17, pp.11, 2015, https://doi.org/10.1513/annalsats.201910-767oc
  20. Disease Staging and Outcome in Pulmonary Hypertension : Deciphering the Right Pattern vol.14, pp.1, 2015, https://doi.org/10.1016/j.jcmg.2020.10.002
  21. Right ventricular free-wall longitudinal speckle tracking strain as a prognostic criterion of adverse outcomes in patients with pulmonary hypertension: a systematic review and meta-analysis vol.26, pp.4, 2015, https://doi.org/10.15829/1560-4071-2021-4417
  22. Improving Right Ventricular Function by Increasing BMP Signaling with FK506 vol.65, pp.3, 2015, https://doi.org/10.1165/rcmb.2020-0528oc
  23. Multimodal assessment of right ventricle overload-metabolic and clinical consequences in pulmonary arterial hypertension vol.23, pp.1, 2015, https://doi.org/10.1186/s12968-021-00743-2