DOI QR코드

DOI QR Code

Common Postmortem Computed Tomography Findings Following Atraumatic Death: Differentiation between Normal Postmortem Changes and Pathologic Lesions

  • Ishida, Masanori (Department of Radiology, Graduate School of Medicine, The University of Tokyo) ;
  • Gonoi, Wataru (Department of Radiology, Graduate School of Medicine, The University of Tokyo) ;
  • Okuma, Hidemi (Department of Radiology, Graduate School of Medicine, The University of Tokyo) ;
  • Shirota, Go (Department of Radiology, Graduate School of Medicine, The University of Tokyo) ;
  • Shintani, Yukako (Department of Pathology, Graduate School of Medicine, The University of Tokyo) ;
  • Abe, Hiroyuki (Department of Pathology, Graduate School of Medicine, The University of Tokyo) ;
  • Takazawa, Yutaka (Department of Pathology, Graduate School of Medicine, The University of Tokyo) ;
  • Fukayama, Masashi (Department of Pathology, Graduate School of Medicine, The University of Tokyo) ;
  • Ohtomo, Kuni (Department of Radiology, Graduate School of Medicine, The University of Tokyo)
  • 투고 : 2015.01.05
  • 심사 : 2015.03.16
  • 발행 : 2015.08.01

초록

Computed tomography (CT) is widely used in postmortem investigations as an adjunct to the traditional autopsy in forensic medicine. To date, several studies have described postmortem CT findings as being caused by normal postmortem changes. However, on interpretation, postmortem CT findings that are seemingly due to normal postmortem changes initially, may not have been mere postmortem artifacts. In this pictorial essay, we describe the common postmortem CT findings in cases of atraumatic in-hospital death and describe the diagnostic pitfalls of normal postmortem changes that can mimic real pathologic lesions.

키워드

참고문헌

  1. Patriquin L, Kassarjian A, Barish M, Casserley L, O'Brien M, Andry C, et al. Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience. J Magn Reson Imaging 2001;13:277-287 https://doi.org/10.1002/1522-2586(200102)13:2<277::AID-JMRI1040>3.0.CO;2-W
  2. Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)--a feasibility study. J Forensic Sci 2003;48:386-403
  3. Ezawa H, Yoneyama R, Kandatsu S, Yoshikawa K, Tsujii H, Harigaya K. Introduction of autopsy imaging redefines the concept of autopsy: 37 cases of clinical experience. Pathol Int 2003;53:865-873 https://doi.org/10.1046/j.1440-1827.2003.01573.x
  4. Roberts IS, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 2012;379:136-142 https://doi.org/10.1016/S0140-6736(11)61483-9
  5. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Watanabe K, et al. Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int 2004;139:39-48 https://doi.org/10.1016/j.forsciint.2003.09.016
  6. Aghayev E, Sonnenschein M, Jackowski C, Thali M, Buck U, Yen K, et al. Postmortem radiology of fatal hemorrhage: measurements of cross-sectional areas of major blood vessels and volumes of aorta and spleen on MDCT and volumes of heart chambers on MRI. AJR Am J Roentgenol 2006;187:209-215 https://doi.org/10.2214/AJR.05.0222
  7. Jackowski C, Schweitzer W, Thali M, Yen K, Aghayev E, Sonnenschein M, et al. Virtopsy: postmortem imaging of the human heart in situ using MSCT and MRI. Forensic Sci Int 2005;149:11-23 https://doi.org/10.1016/j.forsciint.2004.05.019
  8. Kobayashi T, Shiotani S, Kaga K, Saito H, Saotome K, Miyamoto K, et al. Characteristic signal intensity changes on postmortem magnetic resonance imaging of the brain. Jpn J Radiol 2010;28:8-14 https://doi.org/10.1007/s11604-009-0373-9
  9. Ishida M, Gonoi W, Hagiwara K, Takazawa Y, Akahane M, Fukayama M, et al. Postmortem changes of the thyroid on computed tomography. Leg Med (Tokyo) 2011;13:318-322 https://doi.org/10.1016/j.legalmed.2011.08.003
  10. Ishida M, Gonoi W, Hagiwara K, Okuma H, Shirota G, Shintani Y, et al. Early postmortem volume reduction of adrenal gland: initial longitudinal computed tomographic study. Radiol Med 2015;120:662-669 https://doi.org/10.1007/s11547-014-0449-1
  11. Shiotani S, Takahashi N, Anzai Y, Hasegawa I, Yamamoto S, Oguma E, et al. Guidelines for interpretation of postmortem CT. In: Imai Y, Takano H, Yamamoto S, eds. Autopsy imaging guideline, 2nd ed. Tokyo: Vector Core, 2012:54-68
  12. Okuma H, Gonoi W, Ishida M, Shintani Y, Takazawa Y, Fukayama M, et al. Heart wall is thicker on postmortem computed tomography than on antemortem [corrected] computed tomography: the first longitudinal study. PLoS One 2013;8:e76026 https://doi.org/10.1371/journal.pone.0076026
  13. Okuma H, Gonoi W, Ishida M, Shirota G, Shintani Y, Abe H, et al. Comparison of attenuation of striated muscle between postmortem and antemortem computed tomography: results of a longitudinal study. PLoS One 2014;9:e111457 https://doi.org/10.1371/journal.pone.0111457
  14. Jackowski C, Thali MJ, Buck U, Aghayev E, Sonnenschein M, Yen K, et al. Noninvasive estimation of organ weights by postmortem magnetic resonance imaging and multislice computed tomography. Invest Radiol 2006;41:572-578 https://doi.org/10.1097/01.rli.0000221323.38443.8d
  15. Ishida M, Gonoi W, Hagiwara K, Takazawa Y, Akahane M, Fukayama M, et al. Intravascular gas distribution in the upper abdomen of non-traumatic in-hospital death cases on postmortem computed tomography. Leg Med (Tokyo) 2011;13:174-179 https://doi.org/10.1016/j.legalmed.2011.03.002
  16. Ishida M, Gonoi W, Hagiwara K, Takazawa Y, Akahane M, Fukayama M, et al. Hypostasis in the heart and great vessels of non-traumatic in-hospital death cases on postmortem computed tomography: relationship to antemortem blood tests. Leg Med (Tokyo) 2011;13:280-285 https://doi.org/10.1016/j.legalmed.2011.09.004
  17. Ishida M, Gonoi W, Hagiwara K, Okuma H, Shintani Y, Abe H, et al. Fluid in the airway of nontraumatic death on postmortem computed tomography: relationship with pleural effusion and postmortem elapsed time. Am J Forensic Med Pathol 2014;35:113-117 https://doi.org/10.1097/PAF.0000000000000083
  18. Okuma H, Gonoi W, Ishida M, Shintani Y, Takazawa Y, Fukayama M, et al. Greater thickness of the aortic wall on postmortem computed tomography compared with antemortem computed tomography: the first longitudinal study. Int J Legal Med 2014;128:987-993 https://doi.org/10.1007/s00414-013-0955-z
  19. Cha JG, Kim DH, Kim DH, Paik SH, Park JS, Park SJ, et al. Utility of postmortem autopsy via whole-body imaging: initial observations comparing MDCT and 3.0 T MRI findings with autopsy findings. Korean J Radiol 2010;11:395-406 https://doi.org/10.3348/kjr.2010.11.4.395
  20. Levy AD, Harcke HT, Mallak CT. Postmortem imaging: MDCT features of postmortem change and decomposition. Am J Forensic Med Pathol 2010;31:12-17 https://doi.org/10.1097/PAF.0b013e3181c65e1a
  21. Shepherd R. Simpson's forensic medicine, 12th ed. London: Arnold, 2003:37-41
  22. Di Maio VJ, Di Maio DJ. Forensic pathology, 2nd ed. Boca Raton: CRC Press, 2001:21-26
  23. Payne-James J, Busuttil A, Smock W. Forensic medicine: clinical and pathological aspects, 1st ed. San Francisco: Greenwich Medical Media, 2002:731-746
  24. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Itai Y. Postmortem intravascular high-density fluid level (hypostasis): CT findings. J Comput Assist Tomogr 2002;26:892-893 https://doi.org/10.1097/00004728-200211000-00006
  25. Jackowski C, Thali M, Aghayev E, Yen K, Sonnenschein M, Zwygart K, et al. Postmortem imaging of blood and its characteristics using MSCT and MRI. Int J Legal Med 2006;120:233-240 https://doi.org/10.1007/s00414-005-0023-4
  26. Takahashi N, Satou C, Higuchi T, Shiotani M, Maeda H, Hirose Y. Quantitative analysis of intracranial hypostasis: comparison of early postmortem and antemortem CT findings. AJR Am J Roentgenol 2010;195:W388-W393 https://doi.org/10.2214/AJR.10.4442
  27. Takahashi N, Satou C, Higuchi T, Shiotani M, Maeda H, Hirose Y. Quantitative analysis of brain edema and swelling on early postmortem computed tomography: comparison with antemortem computed tomography. Jpn J Radiol 2010;28:349-354 https://doi.org/10.1007/s11604-010-0430-4
  28. Smith AB, Lattin GE Jr, Berran P, Harcke HT. Common and expected postmortem CT observations involving the brain: mimics of antemortem pathology. AJNR Am J Neuroradiol 2012;33:1387-1391 https://doi.org/10.3174/ajnr.A2966
  29. Dedouit F, Sevely A, Costagliola R, Otal P, Loubes-Lacroix F, Manelfe C, et al. Reversal sign on ante- and postmortem brain imaging in a newborn: report of one case. Forensic Sci Int 2008;182:e11-e14 https://doi.org/10.1016/j.forsciint.2008.09.007
  30. Kjos BO, Brant-Zawadzki M, Young RG. Early CT findings of global central nervous system hypoperfusion. AJR Am J Roentgenol 1983;141:1227-1232 https://doi.org/10.2214/ajr.141.6.1227
  31. Bird CR, Drayer BP, Gilles FH. Pathophysiology of "reverse" edema in global cerebral ischemia. AJNR Am J Neuroradiol 1989;10:95-98
  32. Han BK, Towbin RB, De Courten-Myers G, McLaurin RL, Ball WS Jr. Reversal sign on CT: effect of anoxic/ischemic cerebral injury in children. AJNR Am J Neuroradiol 1989;10:1191-1198
  33. Sieswerda-Hoogendoorn T, Beenen LF, van Rijn RR. Normal cranial postmortem CT findings in children. Forensic Sci Int 2015;246:43-49 https://doi.org/10.1016/j.forsciint.2014.10.036
  34. Jackowski C, Grabherr S, Schwendener N. Pulmonary thrombembolism as cause of death on unenhanced postmortem 3T MRI. Eur Radiol 2013;23:1266-1270 https://doi.org/10.1007/s00330-012-2728-3
  35. Tatco VR, Piedad HH. The validity of hyperdense lumen sign in non-contrast chest CT scans in the detection of pulmonary thromboembolism. Int J Cardiovasc Imaging 2011;27:433-440 https://doi.org/10.1007/s10554-010-9673-5
  36. Cobelli R, Zompatori M, De Luca G, Chiari G, Bresciani P, Marcato C. Clinical usefulness of computed tomography study without contrast injection in the evaluation of acute pulmonary embolism. J Comput Assist Tomogr 2005;29:6-12 https://doi.org/10.1097/01.rct.0000148274.45419.95
  37. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Ito Y, et al. Hyperattenuating aortic wall on postmortem computed tomography (PMCT). Radiat Med 2002;20:201-206
  38. Takahashi N, Higuchi T, Hirose Y, Yamanouchi H, Takatsuka H, Funayama K. Changes in aortic shape and diameters after death: comparison of early postmortem computed tomography with antemortem computed tomography. Forensic Sci Int 2013;225:27-31 https://doi.org/10.1016/j.forsciint.2012.04.037
  39. Hyodoh H, Sato T, Onodera M, Washio H, Hasegawa T, Hatakenaka M. Vascular measurement changes observed using postmortem computed tomography. Jpn J Radiol 2012;30:840-845 https://doi.org/10.1007/s11604-012-0134-z
  40. Shiotani S, Kobayashi T, Hayakawa H, Kikuchi K, Kohno M. Postmortem pulmonary edema: a comparison between immediate and delayed postmortem computed tomography. Leg Med (Tokyo) 2011;13:151-155 https://doi.org/10.1016/j.legalmed.2010.12.008
  41. Takahashi N, Higuchi T, Shiotani M, Maeda H, Hirose Y. Intrahepatic gas at postmortem multislice computed tomography in cases of nontraumatic death. Jpn J Radiol 2009;27:264-268 https://doi.org/10.1007/s11604-009-0337-0
  42. Jackowski C, Sonnenschein M, Thali MJ, Aghayev E, Yen K, Dirnhofer R, et al. Intrahepatic gas at postmortem computed tomography: forensic experience as a potential guide for in vivo trauma imaging. J Trauma 2007;62:979-988 https://doi.org/10.1097/01.ta.0000198733.22654.de
  43. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Watanabe K. Postmortem computed tomographic (PMCT) demonstration of the relation between gastrointestinal (GI) distension and hepatic portal venous gas (HPVG). Radiat Med 2004;22:25-29
  44. Asamura H, Ito M, Takayanagi K, Kobayashi K, Ota M, Fukushima H. Hepatic portal venous gas on postmortem CT scan. Leg Med (Tokyo) 2005;7:326-330 https://doi.org/10.1016/j.legalmed.2005.06.003
  45. Shiotani S, Kohno M, Ohashi N, Atake S, Yamazaki K, Nakayama H. Cardiovascular gas on non-traumatic postmortem computed tomography (PMCT): the influence of cardiopulmonary resuscitation. Radiat Med 2005;23:225-229
  46. Yamaki T, Ando S, Ohta K, Kubota T, Kawasaki K, Hirama M. CT demonstration of massive cerebral air embolism from pulmonary barotrauma due to cardiopulmonary resuscitation. J Comput Assist Tomogr 1989;13:313-315 https://doi.org/10.1097/00004728-198903000-00024
  47. Hwang SL, Lieu AS, Lin CL, Liu GC, Howng SL, Kuo TH. Massive cerebral air embolism after cardiopulmonary resuscitation. J Clin Neurosci 2005;12:468-469 https://doi.org/10.1016/j.jocn.2004.03.041
  48. Sakata M, Miki A, Kazama H, Morita M, Yasoshima S. Studies on the composition of gases in the post-mortem body: animal experiments and two autopsy cases. Forensic Sci Int 1980;15:19-29 https://doi.org/10.1016/0379-0738(80)90191-7
  49. Singh MK, O'Donnell C, Woodford NW. Progressive gas formation in a deceased person during mortuary storage demonstrated on computed tomography. Forensic Sci Med Pathol 2009;5:236-242 https://doi.org/10.1007/s12024-009-9103-y
  50. Gill JR, Landi K. Putrefactive rigor: apparent rigor mortis due to gas distension. Am J Forensic Med Pathol 2011;32:242-244 https://doi.org/10.1097/PAF.0b013e3181dd17b9
  51. Spitz WU, Spitz DJ, Fisher RS. Spitz and Fisher's Medicolegal Investigation of Death: Guidelines for the Application of Pathology to Crime Investigation, 4th ed. Springfield: Charles C Thomas, 2006:108
  52. Shiotani S, Ueno Y, Atake S, Kohno M, Suzuki M, Kikuchi K, et al. Nontraumatic postmortem computed tomographic demonstration of cerebral gas embolism following cardiopulmonary resuscitation. Jpn J Radiol 2010;28:1-7 https://doi.org/10.1007/s11604-009-0372-x
  53. Chou CK, Mak CW, Tzeng WS, Chang JM. CT of small bowel ischemia. Abdom Imaging 2004;29:18-22
  54. Benson MD. Adult survival with intrahepatic portal venous gas secondary to acute gastric dilatation, with a review of portal venous gas. Clin Radiol 1985;36:441-443 https://doi.org/10.1016/S0009-9260(85)80339-1
  55. Edlich RF, Borner JW, Kuphal J. Gastric blood flow: its destruction during gastric distention. Am J Surg 1976;120:635-640
  56. Christe A, Flach P, Ross S, Spendlove D, Bolliger S, Vock P, et al. Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med (Tokyo) 2010;12:215-222 https://doi.org/10.1016/j.legalmed.2010.05.005
  57. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Watanabe K, et al. Dilatation of the heart on postmortem computed tomography (PMCT): comparison with live CT. Radiat Med 2003;21:29-35

피인용 문헌

  1. Evaluation of post-mortem lateral cerebral ventricle changes using sequential scans during post-mortem computed tomography vol.130, pp.5, 2015, https://doi.org/10.1007/s00414-016-1327-2
  2. Comparison of volume and attenuation of the spleen between postmortem and antemortem computed tomography vol.130, pp.4, 2015, https://doi.org/10.1007/s00414-016-1337-0
  3. Hematocrit Measurement with R2* and Quantitative Susceptibility Mapping in Postmortem Brain vol.39, pp.7, 2015, https://doi.org/10.3174/ajnr.a5677
  4. Burned bodies: post-mortem computed tomography, an essential tool for modern forensic medicine vol.9, pp.5, 2015, https://doi.org/10.1007/s13244-018-0633-2
  5. Postmortem CT scan in intoxication cases: A necessity or just an indulgence vol.29, pp.3, 2019, https://doi.org/10.4103/ijri.ijri_2_19
  6. Postmortem volume change of the spleen and kidney on early postmortem computed tomography: comparison with antemortem computed tomography vol.37, pp.7, 2019, https://doi.org/10.1007/s11604-019-00841-3
  7. Pediatric postmortem computed tomography: initial experience at a children’s hospital in the United States vol.49, pp.9, 2019, https://doi.org/10.1007/s00247-019-04433-1
  8. Post-mortem computed tomography (PMCT) radiological findings and assessment in advanced decomposed bodies vol.124, pp.10, 2015, https://doi.org/10.1007/s11547-019-01052-6
  9. Comparison between postmortem computed tomography and autopsy in the detection of traumatic head injuries vol.47, pp.1, 2020, https://doi.org/10.1016/j.neurad.2019.03.008
  10. Significance of intracranial gas on post-mortem computed tomography in traumatic cases in the context of medico-legal opinions vol.16, pp.1, 2015, https://doi.org/10.1007/s12024-019-00162-x
  11. Navigating the perils and pitfalls of pediatric forensic postmortem imaging in the United States vol.51, pp.6, 2015, https://doi.org/10.1007/s00247-020-04833-8
  12. Characteristic postmortem computed tomography findings of ingestion of benzine vol.7, pp.3, 2015, https://doi.org/10.1259/bjrcr.20200212
  13. Delayed cerebral enhancement on post-mortem computed tomography due to residual contrast medium administered shortly before death vol.16, pp.8, 2015, https://doi.org/10.1016/j.radcr.2021.04.065
  14. Technical and interpretive pitfalls of postmortem CT: Five examples of errors revealed by autopsy vol.67, pp.1, 2015, https://doi.org/10.1111/1556-4029.14883